CARBON DIOXIDE - (124-38-9)

Introduction

Name: carbon dioxide; dry ice; carbonic anhydride
* IUPAC
CAS Number: 124-38-9
Chemical Formula: CO2
Molar Mass: 44.0095 g
Mass Percent: C 27.291 %; O 72.708 % 

Classification

• inorganic

Uses/Function

• "Atmospheric component used by photosynthetic plants to make carbohydrates and oxygen. The final oxidation product of all carbon-based fuels; its increase in the atmosphere is causing global warming. Used industrially as a refrigerant gas, a blanketing gas in fire extinguishers, and an effervescent gas in beverages. Combined with NH3 to form urea for fertilizers and plastics manufacture." 1

• "In the biological carbon cycle, animals breath oxygen and exhale carbon dioxide; plants use carbon dioxide for photosynthesis and produce oxygen as a byproduct." 2

• "The carbon dioxide in the atmosphere controls the earth's surface temperature...the vibrational energy of some molecules is increased by the absorption of infrared radiation. Carbon dioxide and water absorb infrared radiation in this way. They absorb some of the infrared radiation emitted by the earth and prevent it from returning to space, thus keeping the temperatures of the troposphere and the earth's surface higher than they otherwise would be. It has been calculated that if there were no CO2 and H2O in the atmosphere, the average surface temperature of the earth would be -30ºC rather than +15ºC. The very high surface temperature of Venus is thought to be a result of the greenhouse effect exerted by its dense, carbon-dioxide-containing atmosphere." 3

• "21st most produced chemical in the United States in 1995 - 5.0 megatonnes." 4

• "Recarbonation [in chemical water analysis]" 5

• "It is present in the atmosphere (about 0.03 mole percent) and in our breath, where it results from the biological oxidation of food substances. The gas does have definite physiological effects if the air breathed contains greater than a few percent of CO2: It increases the rate of breathing, and air containing more than 5 mole percent can cause headache and unconsciousness if breathed for a sufficient length of time.

Carbon dioxide fire extinguishers contain carbon dioxide under pressure (mostly as a liquid); the carbon dioxide stream extinguishes a fire by displacing the air as well as by cooling the flame. It is a good, safe extinguisher for most fires.

The rising concentration of carbon dioxide in the atmosphere is a great concern, because of its role in the greenhouse effect. The principal gases in our atmosphere, O2 and N2, are transparent to visible light from the sun, absorbing only a portion of the ultraviolet radiation. When this sunlight reaches the surface of the earth, it is absorbed and converted to heat. The heat causes the atoms in the earth's surface to vibrate and radiate heat as infrared light. Neither O2 nor N2 absorbs infrared radiation, and if these were the only constituents of our atmosphere, this radiation would escape into outer space. However, other substances in the atmosphere, especially CO2, do absorb infrared radiation. This absorption warms the atmosphere, which then reradiates the infrared rays. The effect is to trap the sun's warmth.

The greenhouse effect is important on earth both in providing livable temperatures and in moderating the temperature fluctuations that otherwise would occur. On the moon, where there is no atmosphere, temperatures fluctuate from 100°C during the lunar day to -150°C at night. The concern of climatologists is that the additional greenhouse effect from the increase in carbon dioxide will drastically alter our present climate." 6

Physical Properties



Density (g/cm3):
0.001799 at room temperature/pressure 7
* - 1 atm pressure

Solubility

Qualitative:
soluble: water 7

Bonding

Double Bonds: 2
Triple Bonds: 0
σ Bonds: 2
π Bonds: 2
Total: 4
Carboxyl Groups: 0
Hydroxyl Groups: 0
Hybridization: carbon is sp; oxygen is sp2
Bonding: polar covalent
Ionic Character: 26.97 %

Thermochemistry

ΔHf° (g): -94.05 kcal/mol 8 = -393.51 kJ/mol
ΔHf° (aq undissoc): -98.90 kcal/mol 8 = -413.80 kJ/mol
S° (g): 51.07 cal/(mol•K) 9 = 213.68 J/(mol•K)
S° (aq undissoc): 28.1 cal/(mol•K) 9 = 117.57 J/(mol•K)
ΔGf° (g): -94.26 kcal/mol 10 = -394.38 kJ/mol
ΔGf° (aq undissoc): -92.26 kcal/mol 10 = -386.02 kJ/mol

Reactions

2 Al2O3 + 3 C → 4 Al + 3 CO2  11
C (s graphite) + 2 H2O (g) → CO2 (g) + 2 H2 (g) 12
C (s graphite) + O2 (g) → CO2 (g) 13
C12H22O11 (s sucrose) + 12 O2 (g) → 12 CO2 (g) + 11 H2O (g) 
2 C12H26 (l 1-dodecane) + 37 O2 (g) → 24 CO2 (g) + 26 H2O (g) 14
C2H2 (g acetylene) + 3 O2 (g) → 2 CO2 (g) + H2O (g) 
C2H4 (g ethylene) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (l) 15
C2H4 (g ethylene) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (g) 
2 C2H4O (g ethylene oxide) + 5 O2 (g) → 4 CO2 (g) + 4 H2O (l) 16
C2H5OH (l ethanol) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (g) 17
C2H5OH (l ethanol) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (g) 
2 C2H5SH (l) + 9 O2 (g) → 4 CO2 (g) + 6 H2O (g) + 2 SO2 (g) 18
2 C2H6 (g ethane) + 7 O2 (g) → 4 CO2 (g) + 6 H2O (l) 19
C2H6 (g ethane) + 4 O2 (g) → 2 CO2 (g) + 3 H2O (g) 
2 C2H6O2 (l ethylene glycol) + 5 O2 (g) → 2 CO2 (g) + 3 H2O (l) 20
C2H6O2 (l ethylene glycol) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (g) 
4 C3H5(NO3)3 (l) → 6 N2 (g) + 10 H2O (g) + 12 CO2 (g) + O2 (g) 21
C3H8 (g propane) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (l) 22
C3H8 (g propane) + 5 O2 (g) → 3 CO2 (g) + 4 H2O (g) 23
2 C45H86O6 (s glyceryl trimyristate) + 127 O2 (g) → 90 CO2 (g) + 86 H2O (l) 24
2 C4H10 (g n-butane) + 13 O2 (g) → 8 CO2 (g) + 10 H2O (g) 25
C4H10 (g n-butane) + 7 O2 (g) → 4 CO2 (g) + 5 H2O (g) 
C5H10O5 (s arabinose) + 5 O2 (g) → 5 CO2 (g) + 5 H2O (l) 26
C5H12 (l) + 8 O2 (g) → 5 CO2 (g) + 6 H2O (l) 27
C5H12 (l pentane) + 8 O2 (g) → 5 CO2 (g) + 6 H2O (g) 
C6H10O5 (s) + 6 O2 (g) → 6 CO2 (g) + 5 H2O (g) 28
C6H12O6 (s) + 6 O2 (g) → 6 CO2 (g) + 6 H2O (l) 29
2 C6H14 (l) + 19 O2 (g) → 12 CO2 (g) + 14 H2O (g) 
C6H5CH3 (l toluene) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (g) 30
C6H5CH3 (l toluene) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (l) 31
2 C6H6 (l benzene) + 15 O2 (g) → 12 CO2 (g) + 6 H2O (l) 32
2 C6H6 (l benzene) + 15 O2 (g) → 12 CO2 (g) + 6 H2O (g) 
2 C8H18 (g) + 25 O2 (g) → 16 CO2 (g) + 18 H2O (l) 33
Ca(OH)2 (aq) + CO2 (g) → CaCO3 (s) + H2O (l) 34
CaCO3 (s aragonite) → CaO (s) + CO2 (g) 35
CaCO3 (s) + CO2 (g) + H2O (l) → Ca+2 (aq) + 2 HCO3-1 (aq) 36
CaCO3 (s) + H2C2O4 (aq) → CaC2O4 (s) + H2O (l) + CO2 (g) 37
CaCO3 (s) + 2 HCl (aq) → CaCl2 (aq) + H2O (l) + CO2 (g) 38
CaCO3 (s) + SO2 (g) → CaSO3 (s) + CO2 (g) 39
CdCl2 (aq) + (NH4)2CS (aq) + 2 H2O (l) → CdS (s) + CO2 (g) + 2 NH4Cl (aq) 40
CF2Cl2 (g) + 2 Na2C2O4 (s) → 2 NaF (s) + 2 NaCl (s) + 4 CO2 (g) + C (s) 41
CH3COOH (l acetic acid) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (l) 42
CH3COOH (l acetic acid) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (g) 
4 CH3NH2 (g) + 9 O2 (g) → 4 CO2 (g) + 10 H2O (g) + 2 N2 (g) 43
CH4 (g methane) + 2 O2 (g) → CO2 (g) + 2 H2O (l) 44
CH4 (g methane) + 2 O2 (g) → CO2 (g) + 2 H2O (g) 45
CH4 (g methane) + 2 O2 (g) → CO2 (g) + 2 H2O (g) 
2 CHCl3 (aq) + O2 (g) + 2 H2O (l) → 2 CO2 (g) + 6 HCl (aq) 46
2 CO (g) + O2 (g) → 2 CO2 (g) 47
5 CO2 (g) + 55 NH4+1 (aq) + 76 O2 (g) → C5H7O2N (s bacterial tissue) + 54 NO2-1 (aq) + 52 H2O (l) + 109 H+1 (aq) 48
CS2 (l) + 3 O2 (g) → CO2 (g) + 2 SO2 (g) 49
2 CuO (s) + C (s graphite) → 2 Cu (s) + CO2 (g) 50
2 Fe2O3 (s hematite) + 3 C (s graphite) → 4 Fe (s alpha) + 3 CO2 (g) 51
Fe2O3 (s hematite) + 3 CO (g) → 2 Fe (s alpha) + 3 CO2 (g) 52
FeO (s) + CO (g) → Fe (s alpha) + CO2 (g) 53
H2CO3 (aq) → CO2 (g) + H2O (l) 
H2O (g) + CO (g) → H2 (g) + CO2 (g) 54
H2SO4 (aq) + 2 NaHCO3 (aq) → Na2SO4 (aq) + 2 H2O (l) + 2 CO2 (g) 55
HC3H3O3 (aq) → C2H4O (aq) + CO2 (g) 56
2 HCl (aq) + MgCO3 (s) → MgCl2 (aq) + H2O (l) + CO2 (g) 
2 HCl (aq) + K2CO3 (s) → 2 KCl (aq) + H2O (l) + CO2 (g) 
2 HCl (aq) + Na2CO3 (s) → 2 NaCl (aq) + H2O (l) + CO2 (g) 
2 HCl (aq) + PbCO3 (s) → PbCl2 (aq) + H2O (l) + CO2 (g) 
2 HCl (aq) + FeCO3 (s) → FeCl2 (aq) + H2O (l) + CO2 (g) 
2 HCl (aq) + CaCO3 (s) → CaCl2 (aq) + H2O (l) + CO2 (g) 57
2 HNO3 (aq) + Na2CO3 (aq) → 2 NaNO3 (aq) + H2O (l) + CO2 (g) 58
2 LiOH (s) + CO2 (g) → Li2CO3 (s) + H2O (l) 59
MgCO3 (s) + H2SO4 (aq) → MgSO4 (aq) + H2O (l) + CO2 (g) 60
MgCO3 (s) + 2 HCl (aq) → MgCl2 (aq) + H2O (l) + CO2 (g) 61
Na2CO3 (aq) + 2 HCl (aq) → 2 NaCl (aq) + H2O (l) + CO2 (g) 62
3 NaHCO3 (aq) + C6H8O7 (aq) → 3 CO2 (g) + 3 H2O (l) + NaC6H5O7 (aq) 63
NaHCO3 (s) + HCl (aq) → NaCl (aq) + H2O (l) + CO2 (g) 64
2 NaHCO3 (s) → Na2CO3 (s) + H2O (g) + CO2 (g) 65
NaOH (s) + CO2 (g) → NaHCO3 (s) 66
2 NaOH (s) + CO2 (g) → Na2CO3 (s) + H2O (l) 66
NH3 (g) + CO2 (g) + H2O (l)NaCl (aq) → NaHCO3 (s) + NH4Cl (aq) 67
NiCO3 (s) + 2 HNO3 (aq) → Ni(NO3)2 (aq) + CO2 (g) + H2O (l) 68
PbCO3 (s) + 2 HNO3 (aq) → Pb(NO3)2 (aq) + H2O (l) + CO2 (g) 69
2 SO2 (g) + 2 CaCO3 (s) + O2 (g) → 2 CaSO4 (s) + 2 CO2 (g) 70
2 TiO2 (s rutile) + 3 C (s graphite) + 4 Cl2 (g) → 2 TiCl4 (g) + CO2 (g) + 2 CO (g) 71
TiO2 (s rutile) + C (s graphite) + 2 Cl2 (g) → TiCl4 (g) + CO2 (g) 72
ZnO (s) + CO (g) → Zn (s) + CO2 (g) 72

For More Information

Wikipedia
Journals:
Beer et al., Science 329, 834-838 (2010)
Magazines:
Biello, David. Climate Numerology. Scientific American, January 2010, p 14-15.
Biello, David. Burying Climate Change. Scientific American, November 2009, p 23-25.
Sachs, Jeffrey D. A Clunker of a Climate Policy. Scientific American, November 2009, p 34.
Catling, David C. and Zahnle, Kevin J. The Planetary Air Leak. Scientific American, May 2009, p 36-43.
Choi, Charles Q. Acid Bath. Scientific American, February 2009, p 29.
Milius, Susan. Fruity Whiffs Can Mask the Scent of Carbon Dioxide for Flies, Mosquitoes. Science News, September 26, 2009, p 14.
Ehrenberg, Rachel. Taste Cells for Sour Also Go for Fizz. Science News, November 7, 2009, p 12.
Raloff, Janet. Climate Might be Right for a Deal. Science News, December 5, 2009, p 16-20.
Wullschleger, Stan D. and Strahl, Maya. Climate Change: A Controlled Experiment. Scientific American, March 2010, p 78-83.
Hardt, Marah J. and Safina, Carl. Threatening Ocean Life from the Inside Out. Scientific American, August 2010, p 66-73.
Lackner, Klaus S.. Washing Carbon Out of the Air. Scientific American, June 2010, p 66-71.
Sivak, Michael and Schoettle, Brandon. Accounting for Climate in Ranking Countries' Carbon Dioxide Emissions. American Scientist, July-August 2012, p 278-281.

Sources

(1) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill: New York, 2006; p 575.
(2) - Gillespie, Ronald J., Eaton, Donald R., Humphreys, David A., and Robinson, Edward A. Atoms, Molecules, and Reactions; Prentice-Hall: Englewood Cliffs, NJ, 1994; p 583.
(3) - Gillespie, Ronald J., Eaton, Donald R., Humphreys, David A., and Robinson, Edward A. Atoms, Molecules, and Reactions; Prentice-Hall: Englewood Cliffs, NJ, 1994; p 606.
(4) - Chem. Eng. News, 1995, 73 (26), p 39
(5) - Hammer, Mark J. Water and Wastewater Technology, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, 1986; p 9.
(6) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 445, 447-448.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4-50, 6-64.
(8) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(9) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(10) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(11) - Halka, Monica and Nordstrom, Brian. Metals & Metalloids; Infobase Publishing: New York, NY, 2011; p 18.
(12) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 182.
(13) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 202, 204, 224.
(14) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 214.
(15) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 224.
(16) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 226.
(17) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 97, 223.
(18) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 97, 225.
(19) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 224.
(20) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 226.
(21) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 219.
(22) - Kotz, John C. and Treichel, Paul. Chemistry & Chemical Reactivity 4th ed.; Thomson Brooks/Cole: Belmont, CA, 1999; pp 152, 155.
(23) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 146.
(24) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 212.
(25) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 77, 225.
(26) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 226.
(27) - Zumdahl, Steven and Zumdahl, Susan A. Chemistry 9th ed.; Brooks/Cole: Belmont, CA, 2014; p 135.
(28) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change 4th ed.; McGraw-Hill: Boston, MA, 2006; p 127.
(29) - Kotz, John C. and Treichel, Paul. Chemistry & Chemical Reactivity 4th ed.; Thomson Brooks/Cole: Belmont, CA, 1999; p 148.
(30) - Kotz, John C. and Treichel, Paul. Chemistry & Chemical Reactivity 4th ed.; Thomson Brooks/Cole: Belmont, CA, 1999; p 173.
(31) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 166.
(32) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 223.
(33) - Kotz, John C. and Treichel, Paul. Chemistry & Chemical Reactivity 4th ed.; Thomson Brooks/Cole: Belmont, CA, 1999; p 151.
(34) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 181.
(35) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 75, 139, 225-6.
(36) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 224.
(37) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 138.
(38) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 185.
(39) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 171.
(40) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 419.
(41) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 229.
(42) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 224-226.
(43) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change 4th ed.; McGraw-Hill: Boston, MA, 2006; p 127.
(44) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 162.
(45) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 213.
(46) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 125.
(47) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 184.
(48) - Zumdahl, Steven and Zumdahl, Susan A. Chemistry 9th ed.; Brooks/Cole: Belmont, CA, 2014; p 131.
(49) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 78, 224.
(50) - Zumdahl, Steven and Zumdahl, Susan A. Chemistry 9th ed.; Brooks/Cole: Belmont, CA, 2014; p 132.
(51) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 167.
(52) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 116, 224.
(53) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 378.
(54) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 3.
(55) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 137.
(56) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 183.
(57) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 94, 181.
(58) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 137.
(59) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 183, 227.
(60) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 98.
(61) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 185.
(62) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 91.
(63) - Zumdahl, Steven and Zumdahl, Susan A. Chemistry 9th ed.; Brooks/Cole: Belmont, CA, 2014; p 132.
(64) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 138, 197.
(65) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 211.
(66) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 94.
(67) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 181.
(68) - Kotz, John C. and Treichel, Paul. Chemistry & Chemical Reactivity 4th ed.; Thomson Brooks/Cole: Belmont, CA, 1999; p 173.
(69) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 160.
(70) - Kotz, John C., Treichel, Paul, and Weaver, Gabriela. Chemistry & Chemical Reactivity 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2006; p 166.
(71) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 136.
(72) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 138.