SREBRO

Wprowadzenie

Liczba Atomowa: 47
Grupa: 11 or I B
Względna Masa Atomowa: 107.8682
Okresu: 5
Numer CAS: 7440-22-4

Klasyfikacja

Metale
Niemetale
Półmetale
Metale Alkaliczne
Berylowce
Metale Przejściowe
Tlenowce
Fluorowce
Gazy szlachetne
Lantanowce
Aktynowce


Transuranowce
Brak Stabilne Izotopy
Ciało Stałe
Ciecz
Gaz
Ciało Stałe (Przewidywana)

Opis

Silver has been known since ancient times. It is mentioned in Genesis. Slag dumps in Asia Minor and on islands in the Aegean Sea indicate thatman learned to separate silver from lead as early as 3000 B.C. Silver occurs native and in ores such as argentite (Ag2S) and horn silver (AgCl); lead,lead-zinc, copper, gold, and copper-nickel ores are principal sources. Mexico, Canada, Peru, and the U.S. are the principal silver producers in thewestern hemisphere. Silver is also recovered during electrolytic refining of copper. Commercial fine silver contains at least 99.9% silver. Purities of99.999+% are available commercially. Pure silver has a brilliant white metallic luster. It is a little harder than gold and is very ductile and malleable,being exceeded only by gold and perhaps palladium. Pure silver has the highest electrical and thermal conductivity of all metals, and possesses thelowest contact resistance. It is stable in pure air and water, but tarnishes when exposed to ozone, hydrogen sulfide, or air containing sulfur. The alloysof silver are important. Sterling silver is used for jewelry, silverware, etc. where appearance is paramount. This alloy contains 92.5% silver, theremainder being copper or some other metal. Silver is of utmost importance in photography, about 30% of the U.S. industrial consumption going intothis application. It is used for dental alloys. Silver is used in making solder and brazing alloys, electrical contacts, and high capacity silver-zinc andsilver-cadmium batteries. Silver paints are used for making printed circuits. It is used in mirror production and may be deposited on glass or metalsby chemical deposition, electrodeposition, or by evaporation. When freshly deposited, it is the best reflector of visible light known, but is rapidlytarnishes and loses much of its reflectance. It is a poor reflector of ultraviolet. Silver fulminate (Ag2C2N2O2), a powerful explosive, is sometimes formedduring the silvering process. Silver iodide is used in seeding clouds to produce rain. Silver chloride has interesting optical properties as it can be madetransparent; it also is a cement for glass. Silver nitrate, or lunar caustic, the most important silver compound, is used extensively in photography. Whilesilver itself is not considered to be toxic, most of its salts are poisonous. Natural silver contains two stable isotopes. Forty nine other radioactive isotopesand isomers are known. Silver compounds can be absorbed in the circulatory system and reduced silver deposited in the various tissues of the body.A condition, known as argyria, results, with a greyish pigmentation of the skin and mucous membranes. Silver has germicidal effects and kills manylower organisms effectively without harm to higher animals. Silver for centuries has been used traditionally for coinage by many countries of the world.In recent times, however, consumption of silver has at times greatly exceeded the output. In 1939, the price of silver was fixed by the U.S. Treasuryat 71˘/troy oz., and at 90.5˘/troy oz. in 1946. In November 1961 the U.S. Treasury suspended sales of nonmonetized silver, and the price stabilizedfor a time at about $1.29, the melt-down value of silver U.S. coins. The Coinage Act of 1965 authorized a change in the metallic composition of thethree U.S. subsidiary denominations to clad or composite type coins. This was the first change in U.S. coinage since the monetary system wasestablished in 1792. Clad dimes and quarters are made of an outer layer of 75% Cu and 25% Ni bonded to a central core of pure Cu. The compositionof the one- and five-cent pieces remains unchanged. One-cent coins are 95% Cu and 5% Zn. Five-cent coins are 75% Cu and 25% Ni. Old silver dollarsare 90% Ag and 10% Cu. Earlier subsidiary coins of 90% Ag and 10% Cu officially were to circulate alongside the clad coins; however, in practicethey have largely disappeared (Gresham’s Law), as the value of the silver is now greater than their exchange value. Silver coins of other countries havelargely been replaced with coins made of other metals. On June 24, 1968, the U.S. Government ceased to redeem U.S. Silver Certificates with silver.Since that time, the price of silver has fluctuated widely. As of January 1996, the price of silver was about $5.30/troy oz. (17˘/g); however the pricehas fluctuated considerably due to market instability. 1

Używa/Funkcja

•...gold and silver have been used as free metals since prehistoric times." 2

Właściwości Fizyczne

Temperatura Topnienia:3*  961.78 °C = 1234.93 K = 1763.204 °F
Temperatura Wrzenia:3* 2162 °C = 2435.15 K = 3923.6 °F
:3 
Punkt Potrójny:3 
Punkt Krytyczny:3 
Gęstość:4  10.5 g/cm3

* - at 1 atm

Konfiguracja Elektronowa

Konfiguracja Elektronowa:  *[Kr] 5s1 4d10
: d
: 5
Elektron Walencyjny: 1

Liczby Kwantowe:

n = 4
ℓ = 2
m = 2
ms = -˝

Wiązania Chemiczne

Elektroujemnoś (Skala Paulinga):5 1.93
Electropositivity (Skala Paulinga): 2.07
Powinowactwo Elektronowe:6 1.302 eV
Stopień Utlenienia: +1
Praca Wyjscia:7 4.64 eV = 7.43328E-19 J

Potencjał Jonizacyjny   eV 8  kJ/mol  
1 7.5762    731.0
Potencjał Jonizacyjny   eV 8  kJ/mol  
1 7.5762    731.0
2 21.49    2073.5
Potencjał Jonizacyjny   eV 8  kJ/mol  
3 34.83    3360.6

Termochemia

Pojemnosc Cieplna: 0.235 J/g°C 9 = 25.349 J/mol°C = 0.056 cal/g°C = 6.059 cal/mol°C
: 429 (W/m)/K, 27şC 10
Ciepło Topnienia: 11.3 kJ/mol 11 = 104.8 J/g
: 250.58 kJ/mol 12 = 2323.0 J/g
Stan Skupienia Materii Standardowa Entalpia Tworzenia Związku Chemicznego (ΔHf°)13  (S°)13 Energią swobodną Gibbsa (ΔGf°)13
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 10.17 42.55128 0 0
(g) 68.01 284.55384 41.321 172.887064 58.72 245.68448
(s) 0.0 0 42.6 178.2384
(g) 284.9 1192.0216 173.0 723.832 246.0 1029.264

Izotopy

Nuklid  14 Czas Połowicznego Rozpadu 14 Spin 14 Energia Wiązania
100Ag 99.91610(8) 2.01(9) min (5)+ 833.39 MeV
101Ag 100.91280(11) 11.1(3) min 9/2+ 847.06 MeV
102Ag 101.91169(3) 12.9(3) min 5+ 855.14 MeV
103Ag 102.908973(18) 65.7(7) min 7/2+ 872.53 MeV
104Ag 103.908629(6) 69.2(10) min 5+ 880.61 MeV
105Ag 104.906529(12) 41.29(7) d 1/2- 888.69 MeV
106Ag 105.906669(5) 23.96(4) min 1+ 896.77 MeV
107Ag 106.905097(5) Trwałe 1/2- 904.85 MeV
108Ag 107.905956(5) 2.37(1) min 1+ 912.93 MeV
109Ag 108.904752(3) Trwałe 1/2- 921.01 MeV
110Ag 109.906107(3) 24.6(2) s 1+ 929.08 MeV
111Ag 110.905291(3) 7.45(1) d 1/2- 937.16 MeV
112Ag 111.907005(18) 3.130(9) h 2(-) 945.24 MeV
113Ag 112.906567(18) 5.37(5) h 1/2- 953.32 MeV
114Ag 113.908804(27) 4.6(1) s 1+ 961.40 MeV
115Ag 114.90876(4) 20.0(5) min 1/2- 969.48 MeV
116Ag 115.91136(5) 2.68(10) min (2)- 968.24 MeV
117Ag 116.91168(5) 73.6(14) s [72.8(+20-7) s] 1/2-# 976.32 MeV
118Ag 117.91458(7) 3.76(15) s 1- 984.40 MeV
119Ag 118.91567(10) 6.0(5) s 1/2-# 992.48 MeV
120Ag 119.91879(8) 1.23(4) s 3(+#) 1,000.55 MeV
121Ag 120.91985(16) 0.79(2) s (7/2+)# 1,008.63 MeV
122Ag 121.92353(22)# 0.529(13) s (3+) 1,007.40 MeV
123Ag 122.92490(22)# 0.300(5) s (7/2+) 1,015.47 MeV
124Ag 123.92864(21)# 172(5) ms 3+# 1,023.55 MeV
125Ag 124.93043(32)# 166(7) ms (7/2+)# 1,022.32 MeV
126Ag 125.93450(32)# 107(12) ms 3+# 1,030.39 MeV
127Ag 126.93677(32)# 79(3) ms 7/2+# 1,038.47 MeV
128Ag 127.94117(32)# 58(5) ms 1,037.24 MeV
129Ag 128.94369(43)# 44(7) ms [46(+5-9) ms] 7/2+# 1,045.31 MeV
130Ag 129.95045(36)# ~50 ms 0+ 1,044.08 MeV
93Ag 92.94978(64)# 5# ms [>1.5 µs] 9/2+# 746.10 MeV
94Ag 93.94278(54)# 37(18) ms [26(+26-9) ms] 0+# 760.70 MeV
95Ag 94.93548(43)# 1.74(13) s (9/2+) 775.30 MeV
96Ag 95.93068(43)# 4.45(4) s (8+) 788.03 MeV
97Ag 96.92397(35) 25.3(3) s (9/2+) 802.63 MeV
98Ag 97.92157(7) 47.5(3) s (5+) 812.58 MeV
99Ag 98.91760(16) 124(3) s (9/2)+ 824.38 MeV
Wartości oznaczone # nie są czysto pochodzą z danych doświadczalnych, ale przynajmniej częściowo z systematycznych trendów. Obrotów dla słabych argumentów przypisania są w nawiasach. 14

Reakcje

Abundancja

Ziemia - : sulfides 21
Ziemia - Woda morska: 0.00004 mg/L 22
Ziemia -  Skorupa Ziemska:  0.075 mg/kg = 0.0000075% 22
Ziemia -  Lączny:  44 ppb 23
 -  Lączny:  7.2 ppb 23
Wenus -  Lączny:  49 ppb 23
Chondryty - Lączny: ~0.09 (relative to 106 atoms of Si) 24

Związki

Ceny






Karta Charakterystyki - ACI Alloys, Inc.

Języki

Afrikaans:   Silwer
Albanski:   Argjend
Ormiański:   Արծաթ
Arabski:   فضة
Arumuński:   Asime
Baskijski:   Zilarra
:   Srebro
:   Arc'hant
Bułgarski:   Сребро
Białoruski:   Серабро
:   Argent
Chiński:   银
Kornijski:   Arhans
Chorwacki:   Srebro
:   Stríbro
Duński:   Sřlv
Niderlandzki:   Zilver
Esperanto:   Argxento
Estoński:   Hőbe
Farerski:   Silvur
Fiński:   Hopea
:   Argent
: Arint
:   Sulver
Galicyjski:   Prata
:   ვერცხლი
:   Silber
Grecki:   Αργυρος
Hebrajski:   כסף
Węgierski:   Ezüst
:   Silfur
:   Airgead
:   Argento
:   銀
Kaszubski:   Strzébro
:   Күміс
Koreański:   은
Łotewski:   Sudrabs
:   Sidabras
:   Sëlwer
Macedoński:   Сребро
:   Perak
Maltański:   Fidda
Manx:   Argid
:   Сия
Mongolski:   Мөнгө
:   Sřlv
Oksytański:   Argent
:   Ćвзист
Polski:   Srebro
Portugalski:   Prata
Rosyjski:   Серебро
Gaelicki Szkocki:   Airgead
:   Сребро
Słowacki:   Striebro
Hiszpański:   Plata
Jaćwiński:   Sirablas
Suahili:   Agenti
Szwedzki:   Silver
:   Nukra
:   เงิน
:   Gümüs
Ukraiński:   Срібло
Uzbecki:   Кумуш
Wietnamski:   Ba?c
Walijski:   Arian

Zobacz Też

Zobacz Też:

:
(1) Moyer, Michael. How Much is Left?. Scientific American, September 2010, pp 74-81.

Źródło

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:29.
(2) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 905.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(5) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(13) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 5:5.
(14) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(15) -
(16) -
(17) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 97.
(18) -
(19) -
(20) -
(21) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(22) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(23) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(24) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.