PLOMB

Introduction

Numéro Atomique: 82
Groupe: 14 or IV A
Masse Atomique: 207.2
Période: 6
Numéro CAS: 7439-92-1

Classification

Chalcogène
Halogène
Gaz noble
Lanthanide
Actinide

Groupe du Platine
Transuranien
Pas Isotopes Stables
Solide
Liquide
Gaz
Solide (Présumé)

Description

Long known, mentioned in Exodus. The alchemists believed lead to be the oldest metal and associated it with the planet Saturn. Native lead occurs in nature,but it is rare. Lead is obtained chiefly from galena (PbS) by a roasting process. Anglesite (PbSO4), cerussite (PbCO3), and minim (Pb3O4) are othercommon lead minerals. Lead is a bluish-white metal of bright luster, is very soft, highly malleable, ductile, and a poor conductor of electricity. It is very resistant to corrosion; lead pipes bearing the insignia of Roman emperors, used as drains from the baths, are still in service. It is used in containersfor corrosive liquids (such as sulfuric acid) and may be toughened by the addition of a small percentage of antimony or other metals. Natural lead isa mixture of four stable isotopes: lead-204 (1.4%), lead-206 (24.1%), lead-207 (22.1%), and lead-208 (52.4%). Lead isotopes are the end products of each of thethree series of naturally occurring radioactive elements: lead-206 for the uranium series, lead-207 for the actinium series, and lead-208 for the thorium series.Forty other isotopes of lead, all of which are radioactive, are recognized. Its alloys include solder, type metal, and various antifriction metals. Greatquantities of lead, both as the metal and as the dioxide, are used in storage batteries. Much metal also goes into cable covering, plumbing, ammunition,and in the manufacture of lead tetraethyl. The metal is very effective as a sound absorber, is used as a radiation shield around X-ray equipment andnuclear reactors, and is used to absorb vibration. White lead, the basic carbonate, sublimed white lead (PbSO4) chrome yellow (PbCrO4), red lead(Pb3O4), and other lead compounds are used extensively in paints, although in recent years the use of lead in paints has been drastically curtailed toeliminate or reduce health hazards. Lead oxide is used in producing fine “crystal glass” and “flint glass” of a high index of refraction for achromaticlenses. The nitrate and the acetate are soluble salts. Lead salts such as lead arsenate have been used as insecticides, but their use in recent years hasbeen practically eliminated in favor of less harmful organic compounds. Care must be used in handling lead as it is a cumulative poison. Environmentalconcern with lead poisoning has resulted in a national program to eliminate the lead in gasoline. Lead is priced at about $1/kg (99.9%). 1

Utilisation/Fonction

•may have been the first pure metal obtained from its ore" 2
•used as early as 3000 B.C. by the Egyptians and was later used by Romans to make eating utensils, glazes on pottery, and even intricate plumbing systems." 3
•the widespread use of tetraethyl lead (C2H5)4Pb, as an antinknock agent in gasoline has increased the lead levels in our environment in this century." 4
•The largest major commercial use of lead (about 1.3 million tons annually) is for electrodes in the lead storage batteries used in automobiles." 5
•Once used as a gasoline additive to improve fuel efficiency, but now banned because of its inactivation of auto catalytic converters. Major source of lead as a toxic air pollutant." 6
•If a piece of lead is scraped clean and immediately placed in sulfuric acid, it will be attacked and hydrogen will be set free. In a few moments the bright surface becomes covered with lead sulfate and the action ceases. Hence lead is used for containers of sulfuric acid and in storage batteries containing the acid. The resistance of lead to the action of the acid is due in large part to the dense, insoluble, adherent coating of lead sulfate formed on the surface by the immediate attack of the acid. This sulfate forms on storage battery plates during the discharge of the battery and is reduced to lead peroxide and lead when the battery is again charged...

Lead is fairly cheap, is easily worked, and is durable, so that it is one of our most common and most useful metals. Its density is sometimes an advantage, as in shielding atomic piles against the escape of dangerous radiation. Lead is very extensively used for pipes and as a sheathing for cables, since it is easily cut, bent, and soldered. Lead pipe is now made by forcing the hot lead through a die by means of the piston of a hydraulic press. The opening of the die is partly obstructed by a solid cylindrical rod attached to the upper surface of the piston. This rod moces upward with the piston, and the pipe is formed by the lead being squeezed out between the rod and the wall of the die. Lead may be extruded in any shape for which a die can be cut.

As it withstands ordinary atmospheric conditions, sheet lead was formerly used for roof covering. It is very widely used as a lining for tanks, cisterns, and cells used in electrolytic operations. The Chinese have long used it for lining tea chests. Thin sheet lead, alloyed with tin, is often used instead of pure tin foil for protective coverings." 7
•The early Romans used lead to make water pipes, and today many pipes (especially those used in the chemical industry) are still made of lead. The word plumbing derives from the Latin word plumbum for "lead."

Lead remains one of the most useful metals and is fifth in order by tons produced. It is used to make storage battery plates, tetraethyllead for gasoline antiknock compounds, paint pigments, and ammunition. The use of tetraethyllead in gasoline and the use of lead compounds in paints are being phased out because of the metal's toxicity. Lead compounds poison by combining with enzymes (biological catalysts)." 8

Propriétés Physiques

Point de Fusion:9*  327.46 °C = 600.61 K = 621.428 °F
Point D'ébullition:9* 1749 °C = 2022.15 K = 3180.2 °F
:9 
Point Triple:9 
Point Critique:9 
Masse Volumique:10  11.3 g/cm3

* - at 1 atm

Configuration Électronique

Configuration Électronique: [Xe] 6s2 4f14 5d10 6p2
Bloc: p
: 6
Les Électrons de Valence: 4

Nombres Quantiques:

n = 6
ℓ = 1
m = 0
ms = +½

Liaisons Chimiques

Électronégativité (Échelle de Pauling):11 1.8
Electropositivity (Échelle de Pauling): 2.2
Affinité Électronique:12 0.364 eV
Nombres d'Oxydation: +2,4
Travail de Sortie:13 4.18 eV = 6.69636E-19 J

Énergie d'Ionisation   eV 14  kJ/mol  
1 7.41666    715.6
Énergie d'Ionisation   eV 14  kJ/mol  
1 7.41666    715.6
2 15.0322    1450.4
3 31.9373    3081.5
Énergie d'Ionisation   eV 14  kJ/mol  
4 42.32    4083.3
5 68.8    6638.2

Thermochimie

Capacité Thermique Massique: 0.129 J/g°C 15 = 26.729 J/mol°C = 0.031 cal/g°C = 6.388 cal/mol°C
Conductivité Thermique: 35.3 (W/m)/K, 27ºC 16
: 4.799 kJ/mol 17 = 23.2 J/g
Énergie de Vaporisation: 177.7 kJ/mol 18 = 857.6 J/g
État de la Matière Enthalpie Standard de Formation (ΔHf°)19 Entropie (S°)19 Enthalpie libre (ΔGf°)19
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 15.48 64.76832 0 0
(ℓ) 1.025 4.2886 17.14 71.71376 0.531 2.221704
(g) 46.75 195.602 41.89 175.26776 38.87 162.63208

Isotopes

Nucléide Masse 20 Demi-Vie 20 Spin 20 Énergie de Liaison
178Pb 178.003830(26) 0.23(15) ms 0+ 1,346.00 MeV
179Pb 179.00215(21)# 3# ms 5/2-# 1,354.08 MeV
180Pb 179.997918(22) 4.5(11) ms 0+ 1,371.47 MeV
181Pb 180.99662(10) 45(20) ms 5/2-# 1,379.55 MeV
182Pb 181.992672(15) 60(40) ms [55(+40-35) ms] 0+ 1,387.63 MeV
183Pb 182.99187(3) 535(30) ms (3/2-) 1,395.71 MeV
184Pb 183.988142(15) 490(25) ms 0+ 1,413.11 MeV
185Pb 184.987610(17) 6.3(4) s 3/2- 1,421.18 MeV
186Pb 185.984239(12) 4.82(3) s 0+ 1,429.26 MeV
187Pb 186.983918(9) 15.2(3) s (3/2-) 1,437.34 MeV
188Pb 187.980874(11) 25.5(1) s 0+ 1,445.42 MeV
189Pb 188.98081(4) 51(3) s (3/2-) 1,453.50 MeV
190Pb 189.978082(13) 71(1) s 0+ 1,470.89 MeV
191Pb 190.97827(4) 1.33(8) min (3/2-) 1,478.97 MeV
192Pb 191.975785(14) 3.5(1) min 0+ 1,487.05 MeV
193Pb 192.97617(5) 5# min (3/2-) 1,495.13 MeV
194Pb 193.974012(19) 12.0(5) min 0+ 1,503.21 MeV
195Pb 194.974542(25) ~15 min 3/2#- 1,511.29 MeV
196Pb 195.972774(15) 37(3) min 0+ 1,519.37 MeV
197Pb 196.973431(6) 8.1(17) min 3/2- 1,527.45 MeV
198Pb 197.972034(16) 2.4(1) h 0+ 1,535.52 MeV
199Pb 198.972917(28) 90(10) min 3/2- 1,543.60 MeV
200Pb 199.971827(12) 21.5(4) h 0+ 1,551.68 MeV
201Pb 200.972885(24) 9.33(3) h 5/2- 1,559.76 MeV
202Pb 201.972159(9) 52.5(28)E+3 a 0+ 1,567.84 MeV
203Pb 202.973391(7) 51.873(9) h 5/2- 1,575.92 MeV
204Pb 203.9730436(13) STABLE 0+ 1,584.00 MeV
205Pb 204.9744818(13) 15.3(7)E+6 a 5/2- 1,592.07 MeV
206Pb 205.9744653(13) STABLE 0+ 1,600.15 MeV
207Pb 206.9758969(13) STABLE 1/2- 1,608.23 MeV
208Pb 207.9766521(13) STABLE 0+ 1,616.31 MeV
209Pb 208.9810901(19) 3.253(14) h 9/2+ 1,615.07 MeV
210Pb 209.9841885(16) 22.20(22) a 0+ 1,623.15 MeV
211Pb 210.9887370(29) 36.1(2) min 9/2+ 1,631.23 MeV
212Pb 211.9918975(24) 10.64(1) h 0+ 1,629.99 MeV
213Pb 212.996581(8) 10.2(3) min (9/2+) 1,638.07 MeV
214Pb 213.9998054(26) 26.8(9) min 0+ 1,646.15 MeV
215Pb 215.00481(44)# 36(1) s 5/2+# 1,644.91 MeV
 20

Réactions

L'Abondance

Terre - : sulfides 23
Terre - Eau de mer: 0.00003 mg/L 24
Terre -  Croûte:  0.14 mg/kg = 0.000014% 24
Terre -  Total:  1.58 ppb 25
Mercure -  Total:  0.018 ppb 25
Vénus -  Total:  1.66 ppb 25
Chondrites - Total: 0.14 (relative to 106 atoms of Si) 26
Corps Humain - Total: 0.00017% 27

Composés

Prix





NFPA 704 Ratings:
Health: 3 - Short exposure could cause serious temporary or moderate residual injury.
Flammability: 1 - Must be heated before ignition can occur. Flash point over 93°C (200°F).
Reactivity: 0 - Normally stable, even under fire exposure conditions, and is not reactive with water.

Fiche de Données de Sécurité - ACI Alloys, Inc.

Langues

Afrikaans:   Lood
Albanais:   Plumb
:   Կապար
:   رصاص
Aroumain:   Plumbu
Basque:   Beruna
:   Olovo
:   Plom
:   Олово
Biélorusse:   Цвінец
:   Plom
Chinoises:   铅
:   Plom
:   Olovo
:   Olovo
:   Bly
:   Lood
Espéranto:   Plumbo
Estonien:   Plii
Féroïen:   Blýggj
:   Lyijy
:   Plomb
: Plomp
:   Lead
:   Chumbo
:   ტყვია
:   Blei
Grec:   Μολυβδος
:   עופרת
:   Ólom
:   Blý
:   Luaidhe
:   Piombo
:   鉛
:   Òlów
:   Къоргъасын
Coréen:   납
Letton:   Svins
:   Švinas
:   Blei
Macédonien:   Олово
:   Plumbum, Timbal
:   Comb
:   Leoaie
Mokcha:   Киви
:   Хар тугалга
:   Bly
Occitan:   Plomb
Ossète:   Зды
:   Olów
:   Chumbo
:   Свинец
:   Luaidh
Serbe:   Олово
:   Olovo
:   Plomo
Sudovien:   Svinas
:   Plumbi
:   Bly
:   Surb
:   ตะกั้ว
:   Kursun
Ukrainien:   Свинець
:   Кўргошин
Vietnamien:   Chì
Gallois:   Plwm

Pour plus d'informations

Liens Externes:

:
(1) Richard B. Holtzman and Frank H. Ilcewicz, Science 153, 1259-1260 (1966)
(2) Roberto Gwiazda, Carla Campbell, Donald Smith, Environ. Health Perspect. 113, 104-110 (2005)
(3) Ellen Tohn, Sherry Dixon, Ron Rupp and Scott Clark, Environ. Health Perspect. 108, 453-456 (2000)
(4) Robert A. Root, Environ. Health Perspect. 108, 937-940 (2000)
:
(1) Hanson, David. Safety Law Confounds. Chemical & Engineering News, February 9, 2009, pp 28.

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:17-4:18.
(2) - Zumdahl, Steven S. Chemistry, 4th ed.; Houghton Mifflin: Boston, 1997; p 890.
(3) - Zumdahl, Steven S. Chemistry, 4th ed.; Houghton Mifflin: Boston, 1997; p 890.
(4) - Zumdahl, Steven S. Chemistry, 4th ed.; Houghton Mifflin: Boston, 1997; p 890.
(5) - Zumdahl, Steven S. Chemistry, 4th ed.; Houghton Mifflin: Boston, 1997; p 890.
(6) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill: New York, 2006; p 575.
(7) - Brownlee, Raymond B., Fuller, Robert W., and Whitsit, Jesse E. Elements of Chemistry; Allyn and Bacon: Boston, Massachusetts, 1959; pp 554-5.
(8) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 703.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(11) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(13) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(14) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(15) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(16) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(17) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(18) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(19) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(20) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(21) -
(22) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 386.
(23) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(24) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(25) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(26) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.
(27) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 7:17.