FÓSFORO

Introducción

Número Atómico: 15
Grupo: 15 or V A
Peso Atómico: 30.973761
Periodo: 3
Número CAS: 7723-14-0

Clasificación

Anfígeno
Halógeno
Gases nobles
Lantánido
Actínido
Tierras Raras
Platino Metal Grupo
Transuránicos
No Isótopos Estables
Sólido
Líquido
Gas
Sólido (Predicción)

Descripción

Discovered in 1669 by Brand, who prepared it from urine. Phosphorus exists in four or more allotropic forms: white (or yellow), red, and black (or violet). White phosphorus has two modifications: alpha and beta with a transition temperature at –3.8°C. Never found free in nature, it is widely distributed in combination with minerals. Seventeen isotopes of phosphorus are recognized. Phosphate rock, which contains the mineral apatite, an impure tri-calcium phosphate, is an important source of the element. Large deposits are found in the U.S.S.R., in Morocco, and in Florida, Tennessee, Utah, Idaho, and elsewhere. Phosphorus in an essential ingredient of all cell protoplasm, nervous tissue, and bones. Ordinary phosphorus is a waxy white solid; when pure it is colorless and transparent. It is insoluble in water, but soluble in carbon disulfide. It takes fire spontaneously in air, burning to the pentoxide. It is very poisonous, 50 mg constituting an approximate fatal dose. Exposure to white phosphorus should not exceed 0.1 mg/m^3 (8-hour time-weighted average — 40-hour work week). White phosphorus should be kept under water, as it is dangerously reactive in air, and it should be handled with forceps, as contact with the skin may cause severe burns. When exposed to sunlight or when heated in its own vapor to 250°C, it is converted to the red variety, which does not phosphoresce in air as does the white variety. This form does not ignite spontaneously and it is not as dangerous as white phosphorus. It should, however, be handled with care as it does convert to the white form at some temperatures and it emits highly toxic fumes of the oxides of phosphorus when heated. The red modification is fairly stable, sublimes with a vapor pressure of 1 atm at 417°C,and is used in the manufacture of safety matches, pyrotechnics, pesticides, incendiary shells, smoke bombs, tracer bullets, etc. White phosphorus may be made by several methods. By one process, tri-calcium phosphate, the essential ingredient of phosphate rock, is heated in the presence of carbon and silica in an electric furnace or fuel-fired furnace. Elementary phosphorus is liberated as vapor and may be collected under water. If desired, the phosphorus vapor and carbon monoxide produced by the reaction can be oxidized at once in the presence of moisture to produce phosphoric acid, an important compound in making super-phosphate fertilizers. In recent years, concentrated phosphoric acids, which may contain as much as 70 to 75% P2O5 content, have become of great importance to agriculture and farm production. World-wide demand for fertilizers has caused record phosphate production. Phosphates are used in the production of special glasses, such as those used for sodium lamps. Bone-ash, calcium phosphate, is also used to produce fine chinaware and to produce mono-calcium phosphate used in baking powder. Phosphorus is also important in the production of steels, phosphor bronze, and many other products. Trisodium phosphate is important as a cleaning agent, as a water softener, and for preventing boiler scale and corrosion of pipes and boiler tubes. Organic compounds of phosphorus are important. Amorphous (red) phosphorus costs about $60/kg (99.5%). 1

Usos/Funciones

•is essential for plant growth" 2
•The largest use of phosphorus is in fertilizers. Phosphorus is an essential nutrient, and nature's phosphorus cycle is very slow owing to the low solubility of most natural phosphates. Phosphate fertilizers are therefore essential." 3
•Phosphorus occurs as rock phosphate [Ca5(PO4)3OH]. Phosphates are essential to all living things and are therefore important constituents of commercial fertilizers." 4
•Until the early part of this [20th] century, white phosphorus was used in matches. Red phosphorus...is the active ingredient of the striking surface of a safety match, which has a head containing potassium chlorate, KClO3. When the match is struck against the red phosphorus surface, a reaction of the phosphorus and potassium chlorate causes the match to ignite...Most of the white phosphorus produced is converted to phosphoric acid, H3PO4." 5
•Consider what happens when we dope pure silicon with phosphorus, an element having five instead of the four valence electrons of silicon. A few of the silicon atoms in the structure are replaced by phosphorus atoms. Because each phosphorus atom has five valence electrons, one electron is left over after four bonds are formed to silicon atoms. The extra electron is free to conduct an electric current, and the phosphorus-doped silicon becomes a conductor. It is called an n-type semiconductor, because the current is carried by negative charges (electrons)." 6

Magnitudes Físicas

Form:7 red
Punto de Fusión:7
Punto de Ebullición:7
Punto de Sublimación:7 431 °C = 704.15 K = 807.8 °F
Punto Triple:7 590 °C = 863.15 K = 1094 °F
Punto Crítico:7 721 °C = 994.15 K = 1329.8 °F 7
Form:7 white
Punto de Fusión:7*  44.15 °C = 317.3 K = 111.47 °F
Punto de Ebullición:7* 280.5 °C = 553.65 K = 536.9 °F
Punto de Sublimación:7 
Punto Triple:7 
Punto Crítico:7 721 °C = 994.15 K = 1329.8 °F 7
Form:7 black
Punto de Fusión:7*  610 °C = 883.15 K = 1130 °F
Punto de Ebullición:7
Punto de Sublimación:7 
Punto Triple:7 
Punto Crítico:7 
Densidad:8  1.823 (white)/2.16 (red) g/cm3

* - at 1 atm

Configuración Electrónica

Configuración Electrónica: [Ne] 3s2 3p3
Bloque: p
Nivel Más Alto de Energía Ocupados: 3
Electrones de Valencia: 5

Números Cuánticos:

n = 3
ℓ = 1
m = 1
ms = +½

Enlace Químico

Electronegatividad (Escala de Pauling):9 2.19
Electropositivity (Escala de Pauling): 1.81
Afinidad Electrónica:10 0.7465 eV
Estados de Oxidación: -3

Energía de Ionización   eV 11  kJ/mol  
1 10.48669    1011.8
2 19.7694    1907.5
3 30.2027    2914.1
4 51.4439    4963.6
5 65.0251    6274.0
Energía de Ionización   eV 11  kJ/mol  
5 65.0251    6274.0
6 220.421    21267.4
7 263.57    25430.6
8 309.6    29871.9
9 372.13    35905.1
10 424.4    40948.4
Energía de Ionización   eV 11  kJ/mol  
11 479.46    46260.8
12 560.8    54109.0
13 611.74    59023.9
14 2816.91    271790.4
15 3069.842    296194.7

Termoquímica

Capacidad Calorífica: 0.769 J/g°C 12 = 23.819 J/mol°C = 0.184 cal/g°C = 5.693 cal/mol°C
Conductividad Térmica: 0.235 (W/m)/K, 27ºC 13
Entalpía de Fusión: 0.657 kJ/mol 14 = 21.2 J/g
Entalpía de Vaporización: 12.129 kJ/mol 15 = 391.6 J/g
Estado de Agregación de la Materia Entalpía de Formación (ΔHf°)16 Entropía (S°)16 Energía Libre de Gibbs (ΔGf°)16
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s red V) 0 0 5.45 22.8028 0 0
(l red V) 4.32 18.07488 10.25 42.886 2.89 12.09176
(g red V) 79.80 333.8832 38.98 163.09232 69.80 292.0432
(s alpha white) 4.17 17.44728 9.82 41.08688 2.87 12.00808

Isótopos

Nucleido Masa 17 Periodo de Semidesintegración 17 Espín 17 Energía de enlace nuclear
24P 24.03435(54)# (1+)# 145.38 MeV
25P 25.02026(21)# <30 ns (1/2+)# 166.50 MeV
26P 26.01178(21)# 43.7(6) ms (3+) 182.97 MeV
27P 26.999230(28) 260(80) ms 1/2+ 202.23 MeV
28P 27.992315(4) 270.3(5) ms 3+ 216.83 MeV
29P 28.9818006(6) 4.142(15) s 1/2+ 235.15 MeV
30P 29.9783138(3) 2.498(4) min 1+ 246.03 MeV
31P 30.97376163(20) ESTABLE 1/2+ 258.76 MeV
32P 31.97390727(20) 14.263(3) d 1+ 266.84 MeV
33P 32.9717255(12) 25.34(12) d 1/2+ 276.78 MeV
34P 33.973636(5) 12.43(8) s 1+ 283.00 MeV
35P 34.9733141(20) 47.3(7) s 1/2+ 291.08 MeV
36P 35.978260(14) 5.6(3) s 4-# 294.50 MeV
37P 36.97961(4) 2.31(13) s 1/2+# 301.65 MeV
38P 37.98416(11) 0.64(14) s 305.07 MeV
39P 38.98618(11) 190(50) ms 1/2+# 311.28 MeV
40P 39.99130(15) 153(8) ms (2-,3-) 314.70 MeV
41P 40.99434(23) 100(5) ms 1/2+# 319.99 MeV
42P 42.00101(48) 48.5(15) ms 321.54 MeV
43P 43.00619(104) 36.5(15) ms 1/2+# 324.96 MeV
44P 44.01299(75)# 18.5(25) ms 327.45 MeV
45P 45.01922(86)# 8# ms [>200 ns] 1/2+# 329.01 MeV
46P 46.02738(97)# 4# ms [>200 ns] 329.64 MeV
Los valores marcados con # no se derivan exclusivamente de datos experimentales, pero al menos en parte, de las tendencias sistemáticas. Tiradas con argumentos de asignación débiles están encerrados entre paréntesis. 17

Abundancia

Tierra - Fuente Compuestos: phosphates 18
Tierra - Agua de mar: 0.06 mg/L 19
Tierra -  Corteza:  1050 mg/kg = 0.105% 19
Tierra -  Litosfera:  0.11% 20
Tierra -  Total:  1920 ppm 21
Mercurio -  Total:  390 ppm 21
Venus -  Total:  1860 ppm 21
Condritas - Total: 5300 (relative to 106 atoms of Si) 22
Cuerpo Humano - Total: 1.1% 23

Compuestos

Información Sobre Seguridad


Ficha de Datos de Seguridad - ACI Alloys, Inc.

Idiomas

Afrikáans:   Fosfor
Albanés:   Fosfor
Armenio:   Ֆոսֆոր
Árabe:   فوسفور
Arumano:   Fosforu
Euskera:   Fosforoa
Bosnio:   Fosfor
Bretón:   Fosfor
Búlgaro:   Фосфор
Bielorruso:   Фосфар
Catalán:   Fòsfor
Chino:   磷
Córnico:   Fosforus
Croata:   Fosfor
Checo:   Fosfor
Danés:   Fosfor
Neerlandés:   Fosfor
Esperanto:   Fosforo
Estonio:   Fosfor
Feroés:   Fosfor
Finés:   Fosfori
Francés:   Phosphore
Friulano: Fosfar
Frisio:   Fosfor
Gallego:   Fósforo
Georgiano:   ფოსფორი
Alemán:   Phosphor
Griego:   Φωσφορος
Hebreo:   זרחן
Húngaro:   Foszfor
Islandés:   Fosfór
Irlandés:   Fosfar
Italiano:   Fosforo
Japonés:   リン
Casubio:   Fòsfòr
Kazajo:   Фосфор
Coreano:   인
Letónico:   Fosfors
Lituano:   Fosforas
Luxemburgués:   Phosphor
Macedonio:   Фосфор
Malayo:   Fosforus
Maltés:   Fosfru
Manés:   Fosfaar
Moksha:   Паликандур
Mongol:   Фосфор, Сүүмэг
Noruego:   Fosfor
Occitano:   Fosfòr
Osetio:   Фосфор
Polaco:   Fosfor
Portugués:   Fósforo
Ruso:   Фосфор
Gaélico Escocés:   Fosfaras
Serbio:   Фосфор
Eslovaco:   Fosfor
Español:   Fósforo
:   Fasfaras
Suajili:   Posfori
Sueco:   Fosfor
Tayiko:   Fosfor
Tailandés:   ฟอสฟอรัส
Turco:   Fosfor
Ucraniano:   Фосфор
Uzbeko:   Фосфор
Vietnamita:   Photpho
Galés:   Ffósfforws

Véase También

Enlaces Externos:

Revistas:
(1) Tweed, Katherine. Sewage's Cash Crop. Scientific American, November 2009, pp 28.
(2) Vaccari, David A. Phosphorus: A Looming Crisis. Scientific American, June 2009, pp 54-59.

Fuentes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:22.
(2) - Zumdahl, Steven S. Chemistry, 4th ed.: Houghton Mifflin: Boston, 1997; p 915.
(3) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 965.
(4) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 7.
(5) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 345.
(6) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 394.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(9) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(13) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(14) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(15) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(16) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(17) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(18) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(19) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(20) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 964.
(21) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(22) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.
(23) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 7:17.