NEÓN

Introducción

Número Atómico: 10
Grupo: 18 or VIII A
Peso Atómico: 20.1797
Periodo: 2
Número CAS: 7440-01-9

Clasificación

Anfígeno
Halógeno
Gases nobles
Lantánido
Actínido

Platino Metal Grupo
Transuránicos
No Isótopos Estables
Sólido
Líquido
Gas
Sólido (Predicción)

Descripción

Discovered by Ramsay and Travers in 1898. Neon is a rare gaseous element present in the atmosphereto the extent of 1 part in 65,000 of air. It is obtained by liquefaction of air and separated from the other gases by fractional distillation. Natural neonis a mixture of three isotopes. Six other unstable isotopes are known. It is very inert element; however, it is said to form a compound with fluorine.It is still questionable if true compounds of neon exist, but evidence is mounting in favor of their existence. The following ions are known from opticaland mass spectrometric studies: Ne+, (NeAr)+, (NeH)+, and (HeNe+). Neon also forms an unstable hydrate. In a vacuum discharge tube, neon glowsreddish orange. Of all the rare gases, the discharge of neon is the most intense at ordinary voltages and currents. Neon is used in making the commonneon advertising signs, which accounts for its largest use. It is also used to make high-voltage indicators, lightning arrestors, wave meter tubes, andTV tubes. Neon and helium are used in making gas lasers. Liquid neon is now commercially available and is finding important application as aneconomical cryogenic refrigerant. It has over 40 times more refrigerating capacity per unit volume than liquid helium and more than three times thatof liquid hydrogen. It is compact, inert, and is less expensive than helium when it meets refrigeration requirements. Neon costs about $800/80 cu. ft.(2265 L). 1

Usos/Funciones

•Neon signs" 2
•The French chemist Georges Claude (1870-1960) worked with neon vapor lamps; beginning in 1927, he was able to produce them in quantity. Vapor lamps containing a variety of different gases of gas mixtures could be bent into attractive shapes, or into letters that spelled out words (and usually carried an advertising message). So prominent was the red color of those vapor lamps containing neon that all of them, whether they actually contained neon or not, came to be called neon lights.

A small, dim version of the neon light is the neon glow lamp, which consists of a small bulb containing electrodes in a neon atmosphere. Electricity is forced through the neon, causing it to produce a red glow. Little electricity is required for the purpose, and the lamp is not really intended for illumination, but merely as a signal - to indicate the location of a switch or to act as evidence that some electric circuit is in working order (or, perhaps, is not in working order).

In 1957, the spark chamber was introduced for the detection of subatomic particles, and proved to be more efficient for many purposes than the older detection devices. The spark chamber consists of closely spaced metal plates, with alternate plates highly charged with electricity, so that an electric spark is at the point of being released. When a subatomic particle speeds through, sparks are released at the points where it strikes the plates. Between the plates of this device an inert gas is used, either neon or argon.

Efforts were made at once to produce continuous lasers, and the ruby was replaced by tubes of gas. The gas lasers so produced, later in 1960, were continuous. The gases used in such lasers include all of the stable noble gases, alone or in combination. The first gas laser, produced by the Iranian physicist Ali Javan (b. 1926), working at Bell Telephone Laboratories, made use of a mixture of neon and helium. This variety is still the most important." 3

Magnitudes Físicas

Punto de Fusión:4*  -248.59 °C = 24.56 K = -415.462 °F
Punto de Ebullición:4* -246.08 °C = 27.07 K = -410.944 °F
Punto de Sublimación:4 
Punto Triple:4 
Punto Crítico:4 -228.7 °C = 44.45 K = -379.66 °F 4
Densidad:5  0.825 g/L g/cm3

* - at 1 atm

Configuración Electrónica

Configuración Electrónica: [He] 2s2 2p6
Bloque: p
Nivel Más Alto de Energía Ocupados: 2
Electrones de Valencia: 8

Números Cuánticos:

n = 2
ℓ = 1
m = 1
ms = -½

Enlace Químico

Afinidad Electrónica:6 not stable eV
Estados de Oxidación: 0

Energía de Ionización   eV 7  kJ/mol  
1 21.5646    2080.7
2 40.96328    3952.4
3 63.45    6122.0
Energía de Ionización   eV 7  kJ/mol  
3 63.45    6122.0
4 97.12    9370.7
5 126.21    12177.4
6 157.93    15237.9
Energía de Ionización   eV 7  kJ/mol  
7 207.2759    19999.1
8 239.0989    23069.5
9 1195.8286    115379.9
10 1362.1995    131432.2

Termoquímica

Capacidad Calorífica: 1.030 J/g°C 8 = 20.785 J/mol°C = 0.246 cal/g°C = 4.968 cal/mol°C
Conductividad Térmica: 0.0493 (W/m)/K, 27ºC 9
Entalpía de Fusión: 0.3317 kJ/mol 10 = 16.4 J/g
Entalpía de Vaporización: 1.7326 kJ/mol 11 = 85.9 J/g
Estado de Agregación de la Materia Entalpía de Formación (ΔHf°)12 Entropía (S°)12 Energía Libre de Gibbs (ΔGf°)12
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(g) 0 0 34.95 146.2308 0 0

Isótopos

Nucleido Masa 13 Periodo de Semidesintegración 13 Espín 13 Energía de enlace nuclear
16Ne 16.025761(22) 9E-21 s [122(37) keV] 0+ 94.75 MeV
17Ne 17.017672(29) 109.2(6) ms 1/2- 110.28 MeV
18Ne 18.0057082(3) 1.672(8) s 0+ 129.54 MeV
19Ne 19.0018802(3) 17.296(5) s 1/2+ 141.34 MeV
20Ne 19.9924401754(19) ESTABLE 0+ 157.81 MeV
21Ne 20.99384668(4) ESTABLE 3/2+ 164.95 MeV
22Ne 21.991385114(19) ESTABLE 0+ 174.90 MeV
23Ne 22.99446690(11) 37.24(12) s 5/2+ 180.18 MeV
24Ne 23.9936108(4) 3.38(2) min 0+ 189.19 MeV
25Ne 24.997737(28) 602(8) ms (3/2)+ 193.54 MeV
26Ne 26.000461(29) 197(1) ms 0+ 198.83 MeV
27Ne 27.00759(12) 32(2) ms (3/2+)# 200.38 MeV
28Ne 28.01207(16) 18.3(22) ms 0+ 203.80 MeV
29Ne 29.01939(29) 15.6(5) ms (3/2+)# 205.36 MeV
30Ne 30.02480(61) 5.8(2) ms 0+ 208.78 MeV
31Ne 31.03311(97)# 3.4(8) ms 7/2-# 208.48 MeV
32Ne 32.04002(86)# 3.5(9) ms 0+ 210.03 MeV
33Ne 33.04938(86)# <260 ns 7/2-# 209.73 MeV
34Ne 34.05703(87)# 1# ms [>1.5 µs] 0+ 210.35 MeV
Los valores marcados con # no se derivan exclusivamente de datos experimentales, pero al menos en parte, de las tendencias sistemáticas. Tiradas con argumentos de asignación débiles están encerrados entre paréntesis. 13

Abundancia

Tierra - Fuente Compuestos: uncombined 14
Tierra - Agua de mar: 0.00012 mg/L 15
Tierra -  Corteza:  0.005 mg/kg = 0.0000005% 15
Tierra -  Total:  0.50E-8 cm^3/g 16
Mercurio -  Total:  16
Venus -  Total:  49E-8 cm^3/g 16
Condritas - Total: 0.0015 (relative to 106 atoms of Si) 17

Información Sobre Seguridad


Ficha de Datos de Seguridad - ACI Alloys, Inc.

Idiomas

Afrikáans:   Neon
Albanés:   Neon
Armenio:   Նեոն
Árabe:   نيون
Arumano:   Neon
Euskera:   Neona
Bosnio:   Neon
Bretón:   Neon
Búlgaro:   Неон
Bielorruso:   Неон, Нэон
Catalán:   Neó
Chino:   氖
Córnico:   Neon
Croata:   Neon
Checo:   Neon
Danés:   Neon
Neerlandés:   Neon
Esperanto:   Neono
Estonio:   Neoon
Feroés:   Neon
Finés:   Neon
Francés:   Néon
Friulano: Neon
Frisio:   Neon
Gallego:   Neon
Georgiano:   ნეონი
Alemán:   Neon
Griego:   Νeον
Hebreo:   ניאון
Húngaro:   Neon
Islandés:   Neon
Irlandés:   Neon
Italiano:   Neon
Japonés:   ネオン
Casubio:   Néón
Kazajo:   Неон
Coreano:   네온
Letónico:   Neons
Lituano:   Neonas
Luxemburgués:   Neon
Macedonio:   Неон
Malayo:   Neon
Maltés:   Neon
Manés:   Neion
Moksha:   Неон
Mongol:   Неон
Noruego:   Neon
Occitano:   Neon
Osetio:   Неон
Polaco:   Neon
Portugués:   Néon
Ruso:   Неон
Gaélico Escocés:   Neon
Serbio:   Неон
Eslovaco:   Neón
Español:   Neón
:   Neanas
Suajili:   Neoni
Sueco:   Neon
Tayiko:   Neon
Tailandés:   นีออน
Turco:   Neon
Ucraniano:   Неон
Uzbeko:   Неон
Vietnamita:   Neon, Nê-ông
Galés:   Neon

Véase También

Enlaces Externos:

Fuentes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:20.
(2) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 944.
(3) - Asimov, Isaac. The Noble Gases; Basic Books, Inc.: New York City, 1966; pp 86-88.
(4) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(12) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(13) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(14) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(15) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(16) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(17) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.