HIDRÓGENO

Introducción

Número Atómico: 1
Grupo: 1 or I A
Peso Atómico: 1.00794
Periodo: 1
Número CAS: 1333-74-0

Clasificación

Anfígeno
Halógeno
Gases nobles
Lantánido
Actínido
Tierras Raras
Platino Metal Grupo
Transuránicos
No Isótopos Estables
Sólido
Líquido
Gas
Sólido (Predicción)

Descripción

Hydrogen was prepared many years before it was recognized as a distinct substance by Cavendish in 1766. It was named by Lavoisier. Hydrogen is the most abundant of all elements in the universe, and it is thought that the heavier elements were, and still are, being built from hydrogen and helium. It has been estimated that hydrogen makes up more than 90% of all the atoms or three quarters of the mass of the universe. It is found in the sun and most stars, and plays an important part in the proton-proton reaction and carbon-nitrogen cycle, which accounts for the energy of the sun and stars. It is thought that hydrogen is a major component of the planet Jupiter and that at some depth in the planet’s interior the pressure is so great that solid molecular hydrogen is converted into solid metallic hydrogen. In 1973, it was reported that a group of Russian experimenters may have produced metallic hydrogen at a pressure of 2.8 Mbar. At the transition the density changed from 1.08 to 1.3 g/cm3. Earlier, in 1972, a Livermore (California) group also reported on a similar experiment in which they observed a pressure-volume point centered at 2 Mbar. It has been predicted that metallic hydrogen may be metastable; others have predicted it would be a superconductor at room temperature. On earth, hydrogen occurs chiefly in combination with oxygen in water, but it is also present in organic matter such as living plants, petroleum, coal, etc. It is present as the free element in the atmosphere, but only to the extent of less than 1 ppm by volume. It is the lightest of all gases, and combines with other elements, sometimes explosively, to form compounds. Great quantities of hydrogen are required commercially for the fixation of nitrogen from the air in the Haber ammonia process and for the hydrogenation of fats and oils. It is also used in large quantities in methanol production, in hydrodealkylation, hydrocracking, and hydrodesulfurization. It is also used as a rocket fuel, for welding, for production of hydrochloric acid, for the reduction of metallic ores, and for filling balloons. The lifting power of 1 ft3 of hydrogen gas is about 0.076 lb at 0°C, 760 mm pressure. Production of hydrogen in the U.S. alone now amounts to about 3 billion cubic feet per year. It is prepared by the action of steam on heated carbon, by decomposition of certain hydrocarbons with heat, by the electrolysis of water, or by the displacement from acids by certain metals. It is also produced by the action of sodium or potassium hydroxide on aluminum. Liquid hydrogen is important in cryogenics and in the study of superconductivity, as its melting point is only a 20 degrees above absolute zero. The ordinary isotope of hydrogen, H, is known as protium. In 1932, Urey announced the discovery of a stable isotope, deuterium (2H or D) with an atomic weight of 2. Deuterium is present in natural hydrogen to the extent of 0.015%. Two years later an unstable isotope, tritium (H), with an atomic weight of 3 was discovered. Tritium has a half-life of about 12.5 years. Tritium atoms are also present in hydrogen but in much smaller proportion. Tritium is readily produced in nuclear reactors and is used in the production of the hydrogen bomb. It is also used as a radioactive agent in making luminous paints, and as a tracer. Deuterium gas is readily available, without permit, at about $1/L. Heavy water, deuterium oxide (d2O), which is used as a moderator to slow down neutrons, is available without permit at a cost of 6c to $1/g, depending on quantity and purity. Quite apart from isotopes, it has been shown that hydrogen gas under ordinary conditions is a mixture of two kinds of molecules, known as ortho- and para-hydrogen, which differ from one another by the spins of their electrons and nuclei. Normal hydrogen at room temperature contains 25% of the para form and 75% of the ortho form. The ortho form cannot be prepared in the pure state. Since the two forms differ in energy, the physical properties also differ. The melting and boiling points of parahydrogen are about 0.1°C lower than those of normal hydrogen. Consideration is being given to an entire economy based on solar- and nuclear-generated hydrogen. Located in remote regions, power plants would electrolyze sea water; the hydrogen produced would travel to distant cities by pipelines. Pollution-free hydrogen could replace natural gas, gasoline, etc., and could serve as a reducing agent in metallurgy, chemical processing, refining, etc. It could also be used to convert trash into methane and ethylene. Public acceptance, high capital investment, and the high present cost of hydrogen with respect to present fuels are but a few of the problems facing establishment of such an economy. 1

Usos/Funciones

•The most important industrial uses of hydrogen are in catalytic hydrogenation processes. In the Haber process, nitrogen and hydrogen are combined to form ammonia. Methanol is produced by the reaction of carbon monoxide and hydrogen. Unsaturated vegetable oils, such as cottonseed oil, are hydrogenated to saturated, solid fats." 2
•Hydrogen gas is in many respects an ideal nonpolluting fuel as well as an important reducing agent in the food and petrochemical industries. There has been much discussion of an environmentally benign, hydrogen-based economy for the future, but extraction of hydrogen from water without recourse to the fossil fuels it is intended to replace presents a formidable challenege to chemists and chemical engineers." 3
•Approximately 40% of the hydrogen produced commercially is used to manufacture ammonia, and about the same amount is used in petroleum refining. But the future may hold an even greater role for hydrogen as a fuel.

Liquid hydrogen, H2, is a favorite rocket fuel. Burning it produces more heat per gram than any other fuel. In its gaseous form, hydrogen may become the favorite fuel of the twenty-first century. When hydrogen burns in air, the product is simply water. Therefore, the burning of hydrogen rather than fossil fuels (natural gas, petroleum, and coal) has important advantages.

Controlling carbon dioxide emissions into the atmosphere is a difficult challenge, but the answer might lie in the conversion to a hydrogen energy economy. In a hydrogen economy, hydrogen would become a major energy carrier. Automobiles, for example, could be modified to burn hydrogen. Hydrogen is not a primary energy source, however. It is a convenient and nonpolluting fuel, but it would have to be obtained from other energy sources." 4

Magnitudes Físicas

Densidad:5  0.082 g/L g/cm3

* - at 1 atm

Configuración Electrónica

Configuración Electrónica: 1s1
Bloque: s
Nivel Más Alto de Energía Ocupados: 1
Electrones de Valencia: 1

Números Cuánticos:

n = 1
ℓ = 0
m = 0
ms = +½

Enlace Químico

Electronegatividad (Escala de Pauling):6 2.20
Electropositivity (Escala de Pauling): 1.8
Afinidad Electrónica:7 0.754195 eV
Estados de Oxidación: ±1

Energía de Ionización   eV 8  kJ/mol  
Energía de Ionización   eV 8  kJ/mol  
0 2.20    212.3
Energía de Ionización   eV 8  kJ/mol  
1 13.59844    1312.0

Termoquímica

Capacidad Calorífica: 14.304 J/g°C 9 = 14.418 J/mol°C = 3.419 cal/g°C = 3.446 cal/mol°C
Conductividad Térmica: 0.1815 (W/m)/K, 27ºC 10
Entalpía de Fusión: 0.05868 kJ/mol 11 = 58.2 J/g
Entalpía de Vaporización: 0.44936 kJ/mol 12 = 445.8 J/g
Estado de Agregación de la Materia Entalpía de Formación (ΔHf°)13 Entropía (S°)13 Energía Libre de Gibbs (ΔGf°)13
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(g) 0 0 31.211 130.586824 0 0

Isótopos

Nucleido Masa 14 Periodo de Semidesintegración 14 Espín 14 Energía de enlace nuclear
1H 1.00782503207(10) ESTABLE 1/2+
2H 2.0141017778(4) ESTABLE 1+ 1.90 MeV
3H 3.0160492777(25) 12.32(2) a 1/2+ 8.21 MeV
4H 4.02781(11) 1.39(10)×10-22 s [4.6(9) MeV] 2- 5.29 MeV
5H 5.03531(11) >9.1×10-22 s ? (1/2+) 6.38 MeV
6H 6.04494(28) 2.90(70)×10-22 s [1.6(4) MeV] 2-# 5.52 MeV
7H 7.05275(108)# 2.3(6)×10-23# s [20(5)# MeV] 1/2+# 6.33 MeV
Los valores marcados con # no se derivan exclusivamente de datos experimentales, pero al menos en parte, de las tendencias sistemáticas. Tiradas con argumentos de asignación débiles están encerrados entre paréntesis. 14

Reacciones

2 Al (s) + 3 H2SO4 (aq) → Al2(SO4)3 (aq) + 3 H2 (g) 15
2 Al (s) + 6 HCl (aq) → 2 AlCl3 (s) + 3 H2 (g) 16
2 Al (s) + 2 NaOH (aq) + 6 H2O (ℓ) → 2 Na[Al(OH)4] (aq) + 3 H2 (g) 16
3 B2Cl4 + 3 H2 → 4 BCl3 + B2H6  16
B2H6 (g) + 6 H2O (ℓ) → 6 H2 (g) + 2 H3BO3 (s) 16
2 C (s graphite) + 2 H2 (g) + O2 (g) → CH3COOH (ℓ) 17
C (s graphite) + 2 H2 (g) → CH4 (g) 18
C (s) + H2O (g) → CO (g) + H2 (g) 19
C (s) + 2 H2O (g) → CO2 (g) + 2 H2 (g) 20
C2H4 (g) + H2 (g) → C2H6 (g) 21
C6H14 → C6H6 + 4 H2  21
Ca (s) + 2 H2O (ℓ) → Ca(OH)2 (aq) + H2 (g) 21
CH3OH (ℓ) → 2 H2 (g) + CO (g) 22
CH4 (g) + H2O (g) → CO (g) + 3 H2 (g) 23
CH4 (g) + NH3 (g) → HCN (g) + 3 H2 (g) 24
2 CH4 (g) + O2 (g) → 2 CO (g) + 4 H2 (g) 25
8 CH4 → C8H18 + 7 H2  25
CO (g) + 2 H2 (g) → CH3OH (g) 25
CO (g) + 3 H2 (g) → CH4 (g) + H2O (g) 26
2 Eu (s) + 6 HF (g) → 2 EuF3 (s) + 3 H2 (g) 26
3 Fe (s) + 4 H2O (g) → Fe3O4 (s) + 4 H2 (g) 26
2 Fe (s) + 3 H2SO4 (aq) → Fe2(SO4)3 (aq) + 3 H2 (g) 27
Fe (s) + 2 HCl (aq) → FeCl2 (aq) + H2 (g) 28
2 Fe (s) + 6 HCl (aq) → 2 FeCl3 (aq) + 3 H2 (g) 29
Fe (s) + 2 HCl (aq) → FeCl2 (aq) + H2 (g) 30
3 Fe(OH)2 (s) → Fe3O4 (s) + 2 H2O (ℓ) + H2 (g) 30
KCHO2 (s) + KOH (s) → K2CO3 (s) + H2 (g) 30
2 H2 (g) + O2 (g) → 2 H2O (ℓ) 30
2 H2 (g) + O2 (g) → 2 H2O (g) 31
8 H2 (g) + S8 (s rhombic) → 8 H2S (g) 31
H2O (g) + CO (g) → H2 (g) + CO2 (g) 31
H2SO4 (aq) + Fe (s) → FeSO4 (aq) + H2 (g) 32
N2 (g) + 3 H2 (g) → 2 NH3 (g) 33
2 Na (s) + 2 H2O (ℓ) → 2 NaOH (aq) + H2 (g) 34
2 NaCl (aq) + 2 H2O (ℓ) → H2 (g) + Cl2 (g) + 2 NaOH (aq) 35
2 NO (g) + 2 CH4 (g) → 2 HCN (g) + 2 H2O (g) + H2 (g) 36
Si (s) + 3 HCl (g) → HSiCl3 (g) + H2 (g) 36
SiCl4 (g) + O2 (g) + 2 H2 (g) → SiO2 (s) + 4 HCl (g) 36
3 SiH4 (g) + 4 NH3 (g) → Si3N4 (s) + 12 H2 (g) 37
Sn (s) + 2 HCl (aq) → SnCl2 (aq) + H2 (g) 38
SrH2 (s) + 2 H2O (ℓ) → Sr(OH)2 (s) + 2 H2 (g) 38
Zn (s) + 2 HBr (aq) → ZnBr2 (aq) + H2 (g) 38
Zn (s) + 2 HCl (aq) → H2 (g) + ZnCl2 (aq) 39
Zn (s) + 2 HClO3 (aq) → Zn(ClO3)2 (aq) + H2 (g) 40

Abundancia

Tierra - Fuente Compuestos: oxides 41
Tierra - Agua de mar: 108000 mg/L 42
Tierra -  Corteza:  1400 mg/kg = 0.14% 42
Tierra -  Litosfera:  0.15% 43
Tierra -  Hidrosfera:  10.7% 43
Tierra -  Atmósfera:  0.02% 43
Tierra -  Total:  33 ppm 44
Mercurio -  Total:  0.4 ppm 44
Venus -  Total:  35 ppm 44
Universo -  Total:  73.9% 45
Cuerpo Humano - Total: 10% 46

Compuestos

Información Sobre Seguridad


Ficha de Datos de Seguridad - ACI Alloys, Inc.

Idiomas

Afrikáans:   Waterstof
Albanés:   Hidrogjen
Armenio:   Ջրածին
Árabe:   هيدروجين
Arumano:   Hidroghenu
Euskera:   Hidrogenoa
Bosnio:   Vodonik, Vodik
Bretón:   Hidrogen
Búlgaro:   Водород
Bielorruso:   Вадарод
Catalán:   Hidrogen
Chino:   氢
Córnico:   Hydrojen
Croata:   Vodik
Checo:   Vodík
Danés:   Hydrogen or Brint
Neerlandés:   Waterstof
Esperanto:   Hidrogeno
Estonio:   Vesinik
Feroés:   Hydrogen
Finés:   Vety
Francés:   Hydrogène
Friulano: Idrogjen
Frisio:   Wetterstof
Gallego:   Hidróxeno
Georgiano:   წყალბადი
Alemán:   Wasserstoff
Griego:   Ύdρογονο
Hebreo:   מימן
Húngaro:   Hidrogén
Islandés:   Vetni or Vatnsefni
Irlandés:   Hidrigin
Italiano:   Idrogeno
Japonés:   水素
Casubio:   Wòdzyk
Kazajo:   Сутек
Coreano:   수소
Letónico:   Udenradis
Lituano:   Vandenilis
Luxemburgués:   Waasserstoff
Macedonio:   Водород
Malayo:   Hidrogen
Maltés:   Hajdrogin
Manés:   Hiddragien
Moksha:   Ведиль
Mongol:   Устөрөгч
Noruego:   Hydrogen
Occitano:   Idrogèn
Osetio:   Донгуыр
Polaco:   Wodór
Portugués:   Hidrogéno
Ruso:   Водород
Gaélico Escocés:   Hidrigin
Serbio:   Водоник
Eslovaco:   Vodík
Español:   Hidrógeno
:   Undnilis
Suajili:   Hidrojeni
Sueco:   Väte
Tayiko:   Gidrogen
Tailandés:   ไฮโดรเจน
Turco:   Hidrojen
Ucraniano:   Водень
Uzbeko:   Водород
Vietnamita:   Hydrô, Hidro
Galés:   Hydrogen

Véase También

Enlaces Externos:

Revista Científica:
(1) Koca, Atif, J. Chem. Educ. 80, 1314-1315 (2003)
Revistas:
(1) Catling, David C. and Zahnle, Kevin J. The Planetary Air Leak. Scientific American, May 2009, pp 36-43.
(2) Nellis, William J. Making Metallic Hydrogen. Scientific American, May 2000, pp 84-90.
(3) Hoffman, Roald. Bonding to Hydrogen. American Scientist, September-October 2012, pp 374-378.

Fuentes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:15-4:16.
(2) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 4.
(3) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 9.
(4) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 263.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(12) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(13) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(14) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 140.
(15) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 119.
(16) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 95, 140.
(17) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 7.
(18) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 10.
(19) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 224.
(20) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 224.
(21) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 128, 214, 264.
(22) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 182.
(23) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 224.
(24) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 4.
(25) -
(26) - Kotz, John C. and Treichel, Paul. Chemistry & Chemical Reactivity 4th ed.; Thomson Brooks/Cole: Belmont, CA, 1999; p 164.
(27) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 226.
(28) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 224.
(29) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 226.
(30) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 4.
(31) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 128.
(32) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 214.
(33) - Zumdahl, Steven and Zumdahl, Susan A. Chemistry 9th ed.; Brooks/Cole: Belmont, CA, 2014; p 131.
(34) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change 4th ed.; McGraw-Hill: Boston, MA, 2006; p 127.
(35) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 140.
(36) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 94.
(37) -
(38) -
(39) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 349.
(40) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 181.
(41) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 223-4.
(42) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 118, 197, 209, 224, 226.
(43) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 236.
(44) - Jolly, William L. The Chemistry of the Non-Metals; Prentice-Hall: Englewood Cliffs, New Jersey, 1966; p 3.
(45) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 216.
(46) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 115, 175, 223-4, 227.
(47) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 139, 195, 197.
(48) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 94.
(49) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 138.
(50) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 384.
(51) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 143.
(52) - Swaddle, T.W. Inorganic Chemistry; Academic Press: San Diego, 1997; p 419.
(53) -
(54) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change 4th ed.; McGraw-Hill: Boston, MA, 2006; p 128.
(55) -
(56) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; pp 75, 181, 184.
(57) -
(58) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(59) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(60) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 964.
(61) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(62) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 962.
(63) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 7:17.