COBRE

Introducción

Número Atómico: 29
Grupo: 11 or I B
Peso Atómico: 63.546
Periodo: 4
Número CAS: 7440-50-8

Clasificación

Anfígeno
Halógeno
Gases nobles
Lantánido
Actínido
Tierras Raras
Platino Metal Grupo
Transuránicos
No Isótopos Estables
Sólido
Líquido
Gas
Sólido (Predicción)

Descripción

The discovery of copper dates from prehistoric times. It is said to have been mined for more than 5000 years. It is one of man’s most importantmetals. Copper is reddish colored, takes on a bright metallic luster, and is malleable, ductile, and a good conductor of heat and electricity (second onlyto silver in electrical conductivity). The electrical industry is one of the greatest users of copper. Copper occasionally occurs native, and is found inmany minerals such as cuprite, malachite, azurite, chalcopyrite, and bornite. Large copper ore deposits are found in the U.S., Chile, Zambia, Zaire,Peru, and Canada. The most important copper ores are the sulfides, oxides, and carbonates. From these, copper is obtained by smelting, leaching, andby electrolysis. Its alloys, brass and bronze, long used, are still very important; all American coins are now copper alloys; monel and gun metals alsocontain copper. The most important compounds are the oxide and the sulfate, blue vitriol; the latter has wide use as an agricultural poison and as analgicide in water purification. Copper compounds such as Fehling’s solution are widely used in analytical chemistry in tests for sugar. High-puritycopper (99.999 + %) is available commercially. Natural copper contains two isotopes. Twenty five other radioactive isotopes and isomers are known. 1

Usos/Funciones

•Copper is so widely used, especially in its alloys such as bronze (Cu and Sn) and brass (Cu and Zn), that it is becoming very scarce...The increased use of fiber optics in place of copper in communications cables may help to lessen the demand for this metal. The use of superconducting materials in electricity transmission lines could eventually provide enormous savings." 2
•hemoglobin, bone, nerves, vascular system...needed for the absorption and mobilization of iron, so a deficiency of copper causes a type of anemia that is difficult to distinguish from iron deficiency anemia. Copper is also needed for the cardiovascular system, bone, brain, and nervous system. Premature and malnourished infants are particularly susceptible to developing copper deficiency, in part because milk is a poor source of copper." 3
•One of the many important uses of copper is to make wire for electric transmission. For this it must be practically pure, as even very small amounts of impurity lower the conductivity. If the conductivity of pure copper is considered as 100, copper containing 0.8 per cent of arsenic has a conductivity of only 30, and copper containing 0.5 per cent of silicon has a conductivity of 28. The electrolytic refining of copper furnishes metal pure enough for most electrical work. Sheet copper is used extensively for roofing, linings, and ornamental work. The copper sheeting in the Statue of Liberty is estimated to weigh about 20,000 pounds. Copper is also an important constituent of the bronzes and brasses." 4

Magnitudes Físicas

Punto de Fusión:5*  1084.62 °C = 1357.77 K = 1984.316 °F
Punto de Ebullición:5* 2562 °C = 2835.15 K = 4643.6 °F
Punto de Sublimación:5 
Punto Triple:5 
Punto Crítico:5 
Densidad:6  8.96 g/cm3

* - at 1 atm

Configuración Electrónica

Configuración Electrónica:  *[Ar] 4s1 3d10
Bloque: d
Nivel Más Alto de Energía Ocupados: 4
Electrones de Valencia: 1

Números Cuánticos:

n = 3
ℓ = 2
m = 2
ms = -½

Enlace Químico

Electronegatividad (Escala de Pauling):7 1.90
Electropositivity (Escala de Pauling): 2.1
Afinidad Electrónica:8 1.235 eV
Estados de Oxidación: +2,1
Función de Trabajo:9 4.70 eV = 7.5294E-19 J

Energía de Ionización   eV 10  kJ/mol  
1 7.72638    745.5
2 20.2924    1957.9
3 36.841    3554.6
4 57.38    5536.3
5 79.8    7699.5
6 103    9938.0
7 139    13411.5
8 166    16016.6
9 199    19200.6
Energía de Ionización   eV 10  kJ/mol  
9 199    19200.6
10 232    22384.6
11 265.3    25597.6
12 369    35603.1
13 401    38690.6
14 435    41971.1
15 484    46698.9
16 520    50172.4
17 557    53742.3
18 633    61075.2
19 670.588    64701.9
Energía de Ionización   eV 10  kJ/mol  
20 1697    163735.6
21 1804    174059.5
22 1916    184865.9
23 2060    198759.7
24 2182    210530.9
25 2308    222688.1
26 2478    239090.6
27 2587.5    249655.7
28 11062.38    1067357.2
29 11567.617    1116105.1

Termoquímica

Capacidad Calorífica: 0.385 J/g°C 11 = 24.465 J/mol°C = 0.092 cal/g°C = 5.847 cal/mol°C
Conductividad Térmica: 401 (W/m)/K, 27ºC 12
Entalpía de Fusión: 13.05 kJ/mol 13 = 205.4 J/g
Entalpía de Vaporización: 300.3 kJ/mol 14 = 4725.7 J/g
Estado de Agregación de la Materia Entalpía de Formación (ΔHf°)15 Entropía (S°)15 Energía Libre de Gibbs (ΔGf°)15
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 7.923 33.149832 0 0
(g) 80.86 338.31824 39.74 166.27216 71.37 298.61208

Isótopos

Nucleido Masa 16 Periodo de Semidesintegración 16 Espín 16 Energía de enlace nuclear
52Cu 51.99718(28)# (3+)# 390.35 MeV
53Cu 52.98555(28)# <300 ns (3/2-)# 409.61 MeV
54Cu 53.97671(23)# <75 ns (3+)# 426.07 MeV
55Cu 54.96605(32)# 40# ms [>200 ns] 3/2-# 443.46 MeV
56Cu 55.95856(15)# 93(3) ms (4+) 459.00 MeV
57Cu 56.949211(17) 196.3(7) ms 3/2- 475.46 MeV
58Cu 57.9445385(17) 3.204(7) s 1+ 488.20 MeV
59Cu 58.9394980(8) 81.5(5) s 3/2- 500.93 MeV
60Cu 59.9373650(18) 23.7(4) min 2+ 510.88 MeV
61Cu 60.9334578(11) 3.333(5) h 3/2- 522.68 MeV
62Cu 61.932584(4) 9.673(8) min 1+ 531.69 MeV
63Cu 62.9295975(6) ESTABLE 3/2- 542.56 MeV
64Cu 63.9297642(6) 12.700(2) h 1+ 550.64 MeV
65Cu 64.9277895(7) ESTABLE 3/2- 560.59 MeV
66Cu 65.9288688(7) 5.120(14) min 1+ 567.73 MeV
67Cu 66.9277303(13) 61.83(12) h 3/2- 576.74 MeV
68Cu 67.9296109(17) 31.1(15) s 1+ 582.96 MeV
69Cu 68.9294293(15) 2.85(15) min 3/2- 591.04 MeV
70Cu 69.9323923(17) 44.5(2) s (6-) 596.32 MeV
71Cu 70.9326768(16) 19.4(14) s (3/2-) 604.40 MeV
72Cu 71.9358203(15) 6.6(1) s (1+) 609.68 MeV
73Cu 72.936675(4) 4.2(3) s (3/2-) 616.83 MeV
74Cu 73.939875(7) 1.594(10) s (1+,3+) 622.11 MeV
75Cu 74.94190(105) 1.224(3) s (3/2-)# 628.33 MeV
76Cu 75.945275(7) 641(6) ms (3,5) 632.68 MeV
77Cu 76.94785(43)# 469(8) ms 3/2-# 638.90 MeV
78Cu 77.95196(43)# 342(11) ms 643.25 MeV
79Cu 78.95456(54)# 188(25) ms 3/2-# 648.53 MeV
80Cu 79.96087(64)# 100# ms [>300 ns] 651.02 MeV
Los valores marcados con # no se derivan exclusivamente de datos experimentales, pero al menos en parte, de las tendencias sistemáticas. Tiradas con argumentos de asignación débiles están encerrados entre paréntesis. 16

Reacciones

Abundancia

Tierra - Fuente Compuestos: sulfides 31
Tierra - Agua de mar: 0.00025 mg/L 32
Tierra -  Corteza:  60 mg/kg = 0.006% 32
Tierra -  Litosfera:  0.007% 33
Tierra -  Total:  31 ppm 34
Mercurio -  Total:  5.1 ppm 34
Venus -  Total:  35 ppm 34
Condritas - Total: 250 (relative to 106 atoms of Si) 35
Cuerpo Humano - Total: 0.0001% 36

Compuestos

Precios





Información Sobre Seguridad


Ficha de Datos de Seguridad - ACI Alloys, Inc.

Idiomas

Afrikáans:   Koper
Albanés:   Bakër
Armenio:   Պղինձ
Árabe:   نحاس
Arumano:   Halcumã
Euskera:   Kobrea
Bosnio:   Bakar
Bretón:   Kouevr
Búlgaro:   Мед
Bielorruso:   Медзь
Catalán:   Coure
Chino:   铜
Córnico:   Cober
Croata:   Bakar
Checo:   Med
Danés:   Kobber
Neerlandés:   Koper
Esperanto:   Kupro
Estonio:   Vask
Feroés:   Kopar
Finés:   Kupari
Francés:   Cuivre
Friulano: Ram
Frisio:   Koper
Gallego:   Cobre
Georgiano:   სპილენძი
Alemán:   Kupfer
Griego:   Χαλκος
Hebreo:   נחושת
Húngaro:   Réz
Islandés:   Kopar or Eir
Irlandés:   Copar
Italiano:   Rame
Japonés:   銅
Casubio:   Kòper
Kazajo:   Мыс
Coreano:   구리
Letónico:   Varš
Lituano:   Varis
Luxemburgués:   Koffer
Macedonio:   Бакар
Malayo:   Kuprum, Tembaga
Maltés:   Ram
Manés:   Cobbyr
Moksha:   Серае, Сере
Mongol:   Зэс
Noruego:   Kobber
Occitano:   Coire
Osetio:   Æрхуы
Polaco:   Miedz
Portugués:   Cobre
Ruso:   Медь
Gaélico Escocés:   Copar
Serbio:   Бакар
Eslovaco:   Med
Español:   Cobre
:   Varijan
Suajili:   Kupri
Sueco:   Koppar
Tayiko:   Mis
Tailandés:   ทองแดง
Turco:   Bakir
Ucraniano:   Мідь
Uzbeko:   Мис
Vietnamita:   Ðô`ng
Galés:   Copor

Véase También

Enlaces Externos:

Revistas:
(1) Bower, Bruce. David, Solomon May Have Been Kings of Copper. Science News, November 22, 2008, pp 10.
(2) Moyer, Michael. How Much is Left?. Scientific American, September 2010, pp 74-81.

Fuentes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:9.
(2) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 912.
(3) - Whitten, Kenneth W., Davis, Raymond E., and Peck, M. Larry. General Chemistry 6th ed.; Saunders College Publishing: Orlando, FL, 2000; p 926-7.
(4) - Brownlee, Raymond B., Fuller, Robert W., and Whitsit, Jesse E. Elements of Chemistry; Allyn and Bacon: Boston, Massachusetts, 1959; p 537.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(6) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(7) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(9) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(12) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(13) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(14) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(15) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(16) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(17) -
(18) -
(19) -
(20) - Ebbing, Darrell D. General Chemistry 3rd ed.; Houghton Mifflin Company: Boston, MA, 1990; p 135.
(21) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change 4th ed.; McGraw-Hill: Boston, MA, 2006; p 127.
(22) - Zumdahl, Steven and Zumdahl, Susan A. Chemistry 9th ed.; Brooks/Cole: Belmont, CA, 2014; p 132.
(23) -
(24) -
(25) -
(26) -
(27) -
(28) -
(29) -
(30) -
(31) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(32) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(33) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 964.
(34) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(35) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.
(36) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 7:17.