BERILIO

Introducción

Número Atómico: 4
Grupo: 2 or II A
Peso Atómico: 9.012182
Periodo: 2
Número CAS: 7440-41-7

Clasificación

Anfígeno
Halógeno
Gases nobles
Lantánido
Actínido

Platino Metal Grupo
Transuránicos
No Isótopos Estables
Sólido
Líquido
Gas
Sólido (Predicción)

Descripción

Discovered as the oxide by Vauquelin in beryl and in emeralds in 1798. The metal was isolated in 1828 by Wohler and by Bussy independently by the action of potassium on beryllium chloride. Beryllium is found in some 30 mineral species, the most important of which are bertrandite, beryl, chrysoberyl, and phenacite. Aquamarine and emerald are precious forms of beryl. Beryl (3BeO · Al2O3 · 6SiO2) and bertrandite (4BeO · 2SiO2 · H2O) are the most important commercial sources of the element and its compounds. Most of the metal is now prepared by reducing beryllium fluoride with magnesium metal. Beryllium metal did not become readily available to industry until 1957. The metal, steel gray in color, has many desirable properties. It is one of the lightest of all metals, and has one of the highest melting points of the light metals. Its modulus of elasticity is about one third greater than that of steel. It resists attack by concentrated nitric acid, has excellent thermal conductivity, and is nonmagnetic. It has a high permeability to X-rays, and when bombarded by alpha particles, as from radium or polonium, neutrons are produced in the ratio of about 30 neutrons/million alpha particles. At ordinary temperatures beryllium resists oxidation in air, although its ability to scratch glass is probably due to the formation of a thin layer of the oxide. Beryllium is used as an alloying agent in producing beryllium copper which is extensively used for springs, electrical contacts, spot-welding electrodes, and nonsparking tools. It has found application as a structural material for high-speed aircraft, missiles, spacecraft, and communication satellites. It is being used in the windshield frame, brake discs, support beams, and other structural components of the space shuttle. Because beryllium is relatively transparent to X-rays, ultra-thin Be-foil is finding use in X-ray lithography for reproduction of microminiature integrated circuits. Natural beryllium is made of 9Be and is stable. Eight other radioactive isotopes are known. Beryllium is used in nuclear reactors as a reflector or moderator for it has a low thermal neutron absorption cross section. It is used in gyroscopes, computer parts, and instruments where lightness, stiffness, and dimensional stability are required. The oxide has a very high melting point and is also used in nuclear work and ceramic applications. Beryllium and its salts are toxic and should be handled with the greatest of care. Beryllium and its compounds should not be tasted to verify the sweetish nature of beryllium (as did early experimenters). The metal, its alloys, and its salts can be handled safely if certain work codes are observed, but no attempt should be made to work with beryllium before becoming familiar with proper safeguards. Beryllium metal is available at a cost of about $2.50/g (99.5% pure). 1

Magnitudes Físicas

Punto de Fusión:2*  1287 °C = 1560.15 K = 2348.6 °F
Punto de Ebullición:2* 2471 °C = 2744.15 K = 4479.8 °F
Punto de Sublimación:2 
Punto Triple:2 
Punto Crítico:2 
Densidad:3  1.85 g/cm3

* - at 1 atm

Configuración Electrónica

Configuración Electrónica: [He] 2s2
Bloque: s
Nivel Más Alto de Energía Ocupados: 2
Electrones de Valencia: 2

Números Cuánticos:

n = 2
ℓ = 0
m = 0
ms = -½

Enlace Químico

Electronegatividad (Escala de Pauling):4 1.57
Electropositivity (Escala de Pauling): 2.43
Afinidad Electrónica:5 not stable eV
Estados de Oxidación: +2
Función de Trabajo:6 5.08 eV = 8.13816E-19 J

Energía de Ionización   eV 7  kJ/mol  
1 9.3227    899.5
Energía de Ionización   eV 7  kJ/mol  
1 9.3227    899.5
2 18.21116    1757.1
Energía de Ionización   eV 7  kJ/mol  
3 153.89661    14848.8
4 217.71865    21006.7

Termoquímica

Capacidad Calorífica: 1.825 J/g°C 8 = 16.447 J/mol°C = 0.436 cal/g°C = 3.931 cal/mol°C
Conductividad Térmica: 200 (W/m)/K, 27ºC 9
Entalpía de Fusión: 12.2 kJ/mol 10 = 1353.7 J/g
Entalpía de Vaporización: 292.4 kJ/mol 11 = 32445.0 J/g
Estado de Agregación de la Materia Entalpía de Formación (ΔHf°)12 Entropía (S°)12 Energía Libre de Gibbs (ΔGf°)12
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 2.28 9.53952 0 0
(ℓ) 2.88 12.04992 3.95 16.5268 2.38 9.95792
(g) 77.5 324.26 32.55 136.1892 68.5 286.604

Isótopos

Nucleido Masa 13 Periodo de Semidesintegración 13 Espín 13 Energía de enlace nuclear
10Be 10.0135338(4) 1.51(6)E+6 a 0+ 64.19 MeV
11Be 11.021658(7) 13.81(8) s 1/2+ 64.81 MeV
12Be 12.026921(16) 21.49(3) ms 0+ 68.23 MeV
13Be 13.03569(8) .5(1) ns 1/2+ 67.93 MeV
14Be 14.04289(14) 4.84(10) ms 0+ 69.49 MeV
15Be 15.05346(54)# <200 ns 67.32 MeV
16Be 16.06192(54)# <200 ns 0+ 67.94 MeV
5Be 5.04079(429)# (1/2+)# -2.01 MeV
6Be 6.019726(6) 5.0(3)E-21 s [0.092(6) MeV] 0+ 25.63 MeV
7Be 7.01692983(11) 53.22(6) d 3/2- 36.32 MeV
8Be 8.00530510(4) 6.7(17)E-17 s [6.8(17) eV] 0+ 55.20 MeV
9Be 9.0121822(4) ESTABLE 3/2- 56.95 MeV
Los valores marcados con # no se derivan exclusivamente de datos experimentales, pero al menos en parte, de las tendencias sistemáticas. Tiradas con argumentos de asignación débiles están encerrados entre paréntesis. 13

Abundancia

Tierra - Fuente Compuestos: silicates 14
Tierra - Agua de mar: 0.0000056 mg/L 15
Tierra -  Corteza:  2.8 mg/kg = 0.00028% 15
Tierra -  Total:  45 ppb 16
Mercurio -  Total:  34 ppb 16
Venus -  Total:  47 ppb 16
Condritas - Total: 0.69 (relative to 106 atoms of Si) 17

Compuestos

Información Sobre Seguridad


Ficha de Datos de Seguridad - ACI Alloys, Inc.

Idiomas

Afrikáans:   Berillium
Albanés:   Berilium
Armenio:   Բերիլիում
Árabe:   بيريليوم
Arumano:   Beriliumu
Euskera:   Berilioa
Bosnio:   Berilij
Bretón:   Beriliom
Búlgaro:   Берилий
Bielorruso:   Берылій
Catalán:   Berilli
Chino:   铍
Córnico:   Berylyum
Croata:   Berilij
Checo:   Beryllium
Danés:   Beryllium
Neerlandés:   Beryllium
Esperanto:   Berilio
Estonio:   Berüllium
Feroés:   Beryllium
Finés:   Beryllium
Francés:   Béryllium
Friulano: Berili
Frisio:   Beryllium
Gallego:   Berilio
Georgiano:   ბერილიუმი
Alemán:   Beryllium
Griego:   Βηρυλλιο
Hebreo:   בריליום
Húngaro:   Berillium
Islandés:   Beryllín
Irlandés:   Beirilliam
Italiano:   Berillio
Japonés:   ベリリウム
Casubio:   Beril
Kazajo:   Бериллий
Coreano:   베릴륨
Letónico:   Berilijs
Lituano:   Berilis
Luxemburgués:   Beryllium
Macedonio:   Берилиум
Malayo:   Berilium
Maltés:   Beriljum
Manés:   Beryllium
Moksha:   Берили
Mongol:   Берилли
Noruego:   Beryllium
Occitano:   Berilli
Osetio:   Бериллий
Polaco:   Beryl
Portugués:   Berílio
Ruso:   Бериллий
Gaélico Escocés:   Beirilliam
Serbio:   Берилиjум
Eslovaco:   Berýllium
Español:   Berilio
:   Berilis
Suajili:   Berili
Sueco:   Beryllium
Tayiko:   Berilli'
Tailandés:   เบริลเลียม
Turco:   Berilyum
Ucraniano:   Берилій
Uzbeko:   Бериллий
Vietnamita:   Berili
Galés:   Berilliwm

Véase También

Enlaces Externos:

Revistas:
(1) Irion, Robert. Origami Observatory. Scientific American, October 2010, pp 48-55.

Fuentes

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:5.
(2) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(4) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(6) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(12) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(13) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(14) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(15) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(16) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(17) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.