BERYLLIUM

Introduction

Atomic Number: 4
Group: 2 or II A
Atomic Weight: 9.012182
Period: 2
CAS Number: 7440-41-7

Classification

Chalcogen
Halogen
Noble Gas
Lanthanoid
Actinoid
Rare Earth Metal
Platinum Group Metal
Transuranium
No Stable Isotopes
Solid
Liquid
Gas
Solid (Predicted)

Description

Discovered as the oxide by Vauquelin in beryl and in emeralds in 1798. The metal was isolated in 1828 by Wohler and by Bussy independently by the action of potassium on beryllium chloride. Beryllium is found in some 30 mineral species, the most important of which are bertrandite, beryl, chrysoberyl, and phenacite. Aquamarine and emerald are precious forms of beryl. Beryl (3BeO · Al2O3 · 6SiO2) and bertrandite (4BeO · 2SiO2 · H2O) are the most important commercial sources of the element and its compounds. Most of the metal is now prepared by reducing beryllium fluoride with magnesium metal. Beryllium metal did not become readily available to industry until 1957. The metal, steel gray in color, has many desirable properties. It is one of the lightest of all metals, and has one of the highest melting points of the light metals. Its modulus of elasticity is about one third greater than that of steel. It resists attack by concentrated nitric acid, has excellent thermal conductivity, and is nonmagnetic. It has a high permeability to X-rays, and when bombarded by alpha particles, as from radium or polonium, neutrons are produced in the ratio of about 30 neutrons/million alpha particles. At ordinary temperatures beryllium resists oxidation in air, although its ability to scratch glass is probably due to the formation of a thin layer of the oxide. Beryllium is used as an alloying agent in producing beryllium copper which is extensively used for springs, electrical contacts, spot-welding electrodes, and nonsparking tools. It has found application as a structural material for high-speed aircraft, missiles, spacecraft, and communication satellites. It is being used in the windshield frame, brake discs, support beams, and other structural components of the space shuttle. Because beryllium is relatively transparent to X-rays, ultra-thin Be-foil is finding use in X-ray lithography for reproduction of microminiature integrated circuits. Natural beryllium is made of 9Be and is stable. Eight other radioactive isotopes are known. Beryllium is used in nuclear reactors as a reflector or moderator for it has a low thermal neutron absorption cross section. It is used in gyroscopes, computer parts, and instruments where lightness, stiffness, and dimensional stability are required. The oxide has a very high melting point and is also used in nuclear work and ceramic applications. Beryllium and its salts are toxic and should be handled with the greatest of care. Beryllium and its compounds should not be tasted to verify the sweetish nature of beryllium (as did early experimenters). The metal, its alloys, and its salts can be handled safely if certain work codes are observed, but no attempt should be made to work with beryllium before becoming familiar with proper safeguards. Beryllium metal is available at a cost of about $2.50/g (99.5% pure). 1

Physical Properties

Melting Point:2*  1287 °C = 1560.15 K = 2348.6 °F
Boiling Point:2* 2471 °C = 2744.15 K = 4479.8 °F
Sublimation Point:2 
Triple Point:2 
Critical Point:2 
Density:3  1.85 g/cm3

* - at 1 atm

Electron Configuration

Electron Configuration: [He] 2s2
Block: s
Highest Occupied Energy Level: 2
Valence Electrons: 2

Quantum Numbers:

n = 2
ℓ = 0
m = 0
ms = -½

Bonding

Electronegativity (Pauling scale):4 1.57
Electropositivity (Pauling scale): 2.43
Electron Affinity:5 not stable eV
Oxidation States: +2
Work Function:6 5.08 eV = 8.13816E-19 J

Ionization Potential   eV 7  kJ/mol  
1 9.3227    899.5
Ionization Potential   eV 7  kJ/mol  
1 9.3227    899.5
2 18.21116    1757.1
Ionization Potential   eV 7  kJ/mol  
3 153.89661    14848.8
4 217.71865    21006.7

Thermochemistry

Specific Heat: 1.825 J/g°C 8 = 16.447 J/mol°C = 0.436 cal/g°C = 3.931 cal/mol°C
Thermal Conductivity: 200 (W/m)/K, 27ºC 9
Heat of Fusion: 12.2 kJ/mol 10 = 1353.7 J/g
Heat of Vaporization: 292.4 kJ/mol 11 = 32445.0 J/g
State of Matter Enthalpy of Formation (ΔHf°)12 Entropy (S°)12 Gibbs Free Energy (ΔGf°)12
(kcal/mol) (kJ/mol) (cal/K) (J/K) (kcal/mol) (kJ/mol)
(s) 0 0 2.28 9.53952 0 0
(ℓ) 2.88 12.04992 3.95 16.5268 2.38 9.95792
(g) 77.5 324.26 32.55 136.1892 68.5 286.604

Isotopes

Nuclide Mass 13 Half-Life 13 Nuclear Spin 13 Binding Energy
10Be 10.0135338(4) 1.51(6)E+6 a 0+ 64.19 MeV
11Be 11.021658(7) 13.81(8) s 1/2+ 64.81 MeV
12Be 12.026921(16) 21.49(3) ms 0+ 68.23 MeV
13Be 13.03569(8) .5(1) ns 1/2+ 67.93 MeV
14Be 14.04289(14) 4.84(10) ms 0+ 69.49 MeV
15Be 15.05346(54)# <200 ns 67.32 MeV
16Be 16.06192(54)# <200 ns 0+ 67.94 MeV
5Be 5.04079(429)# (1/2+)# -2.01 MeV
6Be 6.019726(6) 5.0(3)E-21 s [0.092(6) MeV] 0+ 25.63 MeV
7Be 7.01692983(11) 53.22(6) d 3/2- 36.32 MeV
8Be 8.00530510(4) 6.7(17)E-17 s [6.8(17) eV] 0+ 55.20 MeV
9Be 9.0121822(4) STABLE 3/2- 56.95 MeV
Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses. 13

Abundance

Earth - Source Compounds: silicates 14
Earth - Seawater: 0.0000056 mg/L 15
Earth -  Crust:  2.8 mg/kg = 0.00028% 15
Earth -  Total:  45 ppb 16
Mercury -  Total:  34 ppb 16
Venus -  Total:  47 ppb 16
Chondrites - Total: 0.69 (relative to 106 atoms of Si) 17

Compounds

Safety Information


Material Safety Data Sheet - ACI Alloys, Inc.

Languages

Afrikaans:   Berillium
Albanian:   Berilium
Armenian:   Բերիլիում
Arabic:   بيريليوم
Aromanian:   Beriliumu
Basque:   Berilioa
Bosnian:   Berilij
Breton:   Beriliom
Bulgarian:   Берилий
Belarusian:   Берылій
Catalan :   Berilli
Chinese :   铍
Cornish :   Berylyum
Croatian :   Berilij
Czech :   Beryllium
Danish:   Beryllium
Dutch:   Beryllium
Esperanto:   Berilio
Estonian:   Berüllium
Faroese:   Beryllium
Finnish:   Beryllium
French:   Béryllium
Friulan: Berili
Frisian:   Beryllium
Galician:   Berilio
Georgian:   ბერილიუმი
German:   Beryllium
Greek:   Βηρυλλιο
Hebrew:   בריליום
Hungarian:   Berillium
Icelandic:   Beryllín
Irish Gaelic:   Beirilliam
Italian:   Berillio
Japanese:   ベリリウム
Kashubian:   Beril
Kazakh:   Бериллий
Korean:   베릴륨
Latvian:   Berilijs
Lithuanian:   Berilis
Luxembourgish:   Beryllium
Macedonian:   Берилиум
Malay:   Berilium
Maltese :   Beriljum
Manx Gaelic:   Beryllium
Moksha:   Берили
Mongolian:   Берилли
Norwegian:   Beryllium
Occitan:   Berilli
Ossetian:   Бериллий
Polish:   Beryl
Portuguese:   Berílio
Russian:   Бериллий
Scottish Gaelic:   Beirilliam
Serbian:   Берилиjум
Slovak:   Berýllium
Spanish:   Berilio
Sudovian:   Berilis
Swahili:   Berili
Swedish:   Beryllium
Tajik:   Berilli'
Thai:   เบริลเลียม
Turkish:   Berilyum
Ukranian:   Берилій
Uzbek:   Бериллий
Vietnamese:   Berili
Welsh:   Berilliwm

For More Information

External Links:

Magazines:
(1) Irion, Robert. Origami Observatory. Scientific American, October 2010, pp 48-55.

Sources

(1) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:5.
(2) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:132.
(3) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 4:39-4:96.
(4) - Dean, John A. Lange's Handbook of Chemistry, 11th ed.; McGraw-Hill Book Company: New York, NY, 1973; p 4:8-4:149.
(5) - Lide, David R. CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Boca Raton, FL, 2002; p 10:147-10:148.
(6) - Speight, James. Lange's Handbook of Chemistry, 16th ed.; McGraw-Hill Professional: Boston, MA, 2004; p 1:132.
(7) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 10:178 - 10:180.
(8) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 4:133.
(9) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:193, 12:219-220.
(10) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:123-6:137.
(11) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; pp 6:107-6:122.
(12) - Dean, John A. Lange's Handbook of Chemistry, 12th ed.; McGraw-Hill Book Company: New York, NY, 1979; p 9:4-9:94.
(13) - Atomic Mass Data Center. http://amdc.in2p3.fr/web/nubase_en.html (accessed July 14, 2009).
(14) - Silberberg, Martin S. Chemistry: The Molecular Nature of Matter and Change, 4th ed.; McGraw-Hill Higher Education: Boston, MA, 2006, p 965.
(15) - Lide, David R. CRC Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Boca Raton, FL, 2002; p 14:17.
(16) - Morgan, John W. and Anders, Edward, Proc. Natl. Acad. Sci. USA 77, 6973-6977 (1980)
(17) - Brownlow, Arthur. Geochemistry; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1979, pp 15-16.